Asymptotics of Jacobi-Type Orthogonal Polynomials

The Case of the Cross.
Ahmad Barhoumi (joint work with Maxim Yattselev)
Indiana U - Purdue U, Indianapolis
abarhoum@iupui.edu

Abstract

We investigate asymptotic behavior of polynomials $Q_{n}(z)$ satisfying non-Hermitian orthogonality relaions

$$
\begin{equation*}
\int_{\Delta} s^{k} Q_{n}(s) \rho(s) \mathrm{d} s=0, \quad k \in\{0, \ldots, n-1\}, \tag{1}
\end{equation*}
$$

where $\Delta:=[-a, a] \cup[-\mathrm{i} b, \mathrm{i} b], a, b>0$, and $\rho(s)$ is a Jacobi-type weight. The primary motivation for his work is study of the convergence properties of the Pade approximants to functions of the form

$f(z)=(z-a)^{\alpha_{1}}(z-\mathrm{i} b)^{\alpha_{2}}(z+a)^{\alpha_{3}}(z+\mathrm{i} b)^{\alpha_{4}}$

where the exponents $\alpha_{i} \notin \mathbb{Z}$ add up to an intege

Class \mathcal{W}_{ℓ}

Let ℓ be a positive integer or infinity. We shall say that a function $\rho(s)$ on Δ belongs to the class \mathcal{W}_{ℓ} if (i) $\rho_{i}(s):=\rho_{\mid \Delta_{i}}(s)$ factors as a product $\rho_{i}(s)=\rho_{i}^{*}(s)\left(s-a_{i}\right)^{\alpha_{i}}$, where the function $\rho_{i}^{*}(z)$ is non-vanishing Ind holomorphic in some neighborhood of $\Delta_{i}, \alpha_{i}>-1$, and $\left(z-a_{i}\right)^{\alpha_{i}}$ is a branch holomorphic acros $\Delta \backslash\left\{a_{i}\right\}, i \in\{1,2,3,4\}$;
(ii) in some neighborhood of the origin it holds that $\left(\rho_{1} \rho_{3}\right)(z)=c\left(\rho_{2} \rho_{4}\right)(z)$ for some constant c. (iii) it holds that $\rho_{1}(0)+\rho_{2}(0)+\rho_{3}(0)+\rho_{4}(0)=0$;
(iv) the quantities $\rho_{i}^{(l)}(0) / \rho_{i}(0), 0 \leq l<\ell$, do not depend on $i \in\{1,2,3,4\}$.

Padé Approximation

For an integrable weight $\rho(s)$ on Δ defin

$$
\begin{equation*}
\widehat{\rho}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Delta} \frac{\rho(s) \mathrm{d} s}{s-z}, \quad z \in \overline{\mathbb{C}} \backslash \Delta . \tag{2}
\end{equation*}
$$

In particular, it can be readily verified that the functions

$$
\sum_{i=1}^{4} C_{i} \log \left(z-a_{i}\right) \quad \text { and } \quad \prod_{i=1}^{4}\left(z-a_{i}\right)^{\alpha_{i}},
$$

where the constants C_{i} add up to zero and the exponents $-1<\alpha_{i} \notin \mathbb{Z}$ add up to an integer, possess ranches holomorphic off Δ that can be represented by (2) for certain weight functions in \mathcal{W}_{∞} (the Giver (z) a in (2) it follows fro (2) $0 \rightarrow$ anlity relation (1) that the
there exists a polynomial $P_{n}(z$ of degree at most $n-1$ such that

$$
\begin{equation*}
R_{n}(z):=\left(Q_{n} \widehat{\rho}\right)(z)-P_{n}(z)=\mathcal{O}\left(z^{-n-1}\right) \quad \text { as } \quad z \rightarrow \infty . \tag{}
\end{equation*}
$$

The rational function $[n / n]_{\hat{\rho}}(z):=P_{n}(z) / Q_{n}(z)$ is called the n-th diagonal Padé approximant to $\widehat{\rho}(z)$.

Baker-Akhiezer Functions

To state the main results requires the introduction of functions $\Psi_{n}^{(J)}(z)$, known as Baker - Akhiezer functions. Their main properties are.

- $\Psi_{n}^{(J)}$ are sectionally meromorphic on the Riemann surface \mathfrak{R} of $w^{2}=\left(z^{2}-a^{2}\right)\left(z^{2}+b^{2}\right)$,
- $\Psi_{n}^{(0)}$ is geometrically large on closed subsets of the complement of Δ
- $\Psi_{n}^{(0)}$ has the divisor $(n-1) \infty^{(1)}-\mathcal{D}_{n}-n \infty^{(0)}$, where \mathcal{D}_{n} is a positive divisor of degree - In this setting, \mathcal{D}_{n} depends only on the parity of n. It will be important that $\mathcal{D}_{n} \neq \infty^{(0)}$ - This can be guaranteed along one of three subsequences (depending only on ρ): $\mathbb{N}_{\rho}=\mathbb{N}, 2 \mathbb{N}, \mathbb{N} \backslash 2 \mathbb{N}$.

Main Result

Choose branches of the logarithm such that

$$
\begin{equation*}
\nu:=\frac{1}{2 \pi \mathrm{i}} \sum_{i=1}^{4}(-1)^{i} \log \rho_{i}(0) \quad \text { satisfies } \operatorname{Re}(\nu) \in\left(-\frac{1}{2}, \frac{1}{2}\right] . \tag{4}
\end{equation*}
$$

Let $\rho(s) \in \mathcal{W}_{\ell}$, where ℓ is a positive integer or infinity, be such that $\operatorname{Re}(\nu) \in(-1 / 2,1 / 2)$. Then it holds for all $n \in \mathbb{N}_{\rho}$ large enough that

$$
\begin{equation*}
Q_{n}(z)=\gamma_{n}\left(1+v_{n 1}(z)\right) \Psi_{n}\left(z^{(0)}\right)+\gamma_{n} v_{n 2}(z) \Psi_{n-1}\left(z^{(0)}\right) \tag{5}
\end{equation*}
$$

locally uniformly in $\overline{\mathbb{C}} \backslash \Delta$, where γ_{n} is given explicitly in terms of theta functions, $v_{n i}(\infty)=0$, and

$$
v_{n i}(z)=\mathcal{O}\left(n^{-d_{\nu, \ell}}\right), \quad d_{\nu, \ell}:=\left(\frac{1}{2}-|\operatorname{Re}(\nu)|\right) \frac{\ell-2|\operatorname{Re}(\nu)|}{\ell+1-2|\operatorname{Re}(\nu)|},
$$

locally uniformly in $\overline{\mathbb{C}} \backslash\{0\}$ (uniformly in $\overline{\mathbb{C}}$ when $\ell=\infty$). In particular, polynomials $Q_{n}(z)$ have degree n for all $n \in \mathbb{N}_{\rho}$ large enough.

Riemann-Hilbert Problem

Just as was first done by Fokas, Its, and Kitaev [2, 3], we connect the orthogonal polynomials $Q_{n}(z)$ to a 2×2 matrix Riemann-Hilbert problem. To this end, suppose that the index n is such that

$$
\begin{equation*}
\operatorname{deg} Q_{n}=n \quad \text { and } \quad R_{n-1}(z) \sim z^{-n} \quad \text { as } z \rightarrow \infty \tag{6}
\end{equation*}
$$

where $R_{n}(z)$ is given by (3). Furthermore, let

$$
\boldsymbol{Y}(z):=\left(\begin{array}{cc}
Q_{n}(z) & R_{n}(z) \tag{7}\\
k_{n-1} Q_{n-1}(z) & k_{n-1} R_{n-1}(z)
\end{array}\right),
$$

where k_{n-1} is a constant such that $k_{n-1} R_{n-1}(z)=z^{-n}(1+o(1))$ near infinity. Then $\boldsymbol{Y}(z)$ solves the following Riemann-Hilbert problem (RHP- \boldsymbol{Y})
(a) $\boldsymbol{Y}(z)$ is analytic in $\mathbb{C} \backslash \Delta$ and $\lim _{z \rightarrow \infty} \boldsymbol{Y}(z) z^{-n \sigma_{3}}=\boldsymbol{I}$.
(b) $\boldsymbol{Y}(z)$ has continuous traces on Δ° that satisfy

$$
\boldsymbol{Y}_{+}(s)=\boldsymbol{Y}_{-}(s)\left(\begin{array}{cc}
1 & \rho(s) \\
0 & 1
\end{array}\right), \quad s \in \Delta^{\circ} .
$$

(c) $\boldsymbol{Y}(z)$ is bounded around the origin. Near a_{i} 's the first column is bounded, while the second column is bounded for $\alpha_{i}>0$, possesses a logarithmic singularity for $\alpha_{i}=0$, and a power singularity (i.e. $\sim\left|z-a_{i}\right|^{\alpha_{i}}$) for $\alpha_{i}>0$.

Figure 1: The opening of the " "lenses.
Figure 2: Contour for final Riemann-Hilbert problem.

Model Problem

A key step in the analysis is to identify a matrix function, denoted $\Psi_{s_{1}, s_{2}}(\zeta)$, that satisfies the following jump conditions:

Figure 3: The jumps of $s_{s_{1}, s_{2}}(\zeta)$ over the corresponding contours.

Here, $s_{1}, s_{2} \in \mathbb{C}$ are independent parameters related to $\nu \in \mathbb{C}, \operatorname{Re}(\nu) \in\left(-\frac{1}{2}, \frac{1}{2}\right]$ by

$$
\begin{equation*}
e^{-2 \pi i \nu}:=1-s_{1} s_{2} \tag{8}
\end{equation*}
$$

(we slightly abuse the notation here as the parameter ν has already been fixed in (4); however, we shall use the construction below with parameters s_{1}, s_{2} such that (8) holds with ν from (4)). Define constants b, d by

$$
b:=-s_{1} \frac{\Gamma(1+\nu)}{\sqrt{2 \pi}} \text { and } d:=-s_{2} e^{\nu \pi i} \frac{\Gamma(1-\nu)}{\sqrt{2 \pi}},
$$

where $\Gamma(z)$ is the standard Gamma function. Denote by $D_{\mu}(\zeta)$ the parabolic cylinder function in Whit where $I(z)$ is the standard Gamma function. Denote by $D_{\mu}(\zeta)$ the

$$
\begin{aligned}
& \left(\begin{array}{cc}
D_{\nu}(2 \zeta) & b D_{-\nu-1}(-2 \mathrm{i} \zeta) \\
d D_{\nu-1}(2 \zeta) & D_{-\nu}(-2 \mathrm{i} \zeta)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 e^{-\pi i \nu / 2}
\end{array}\right), \quad \arg (\zeta) \in\left(0, \frac{\pi}{2}\right), \\
& \left(\begin{array}{cc}
D_{\nu}(-2 \zeta) & b D_{-\nu-1}(-2 \mathrm{i} \zeta) \\
-d D_{\nu-1}(-2 \zeta) & D_{-\nu}(-2 \mathrm{i} \zeta)
\end{array}\right)\left(\begin{array}{cc}
e^{\pi \mathrm{i} \nu} & 0 \\
0 & e^{-\pi \mathrm{i} / 2} / 2
\end{array}\right), \arg (\zeta) \in\left(\frac{\pi}{2}, \pi\right), \\
& \left(\begin{array}{cc}
D_{\nu}(-2 \zeta) & -b D_{-\nu-1}(2 \mathrm{i} \zeta) \\
-d D_{\nu-1}(-2 \zeta) & D_{-\nu}(2 \mathrm{i} \zeta)
\end{array}\right)\left(\begin{array}{cc}
e^{-\pi \mathrm{i} \nu} & 0 \\
0 & e^{\pi i \nu / 2}
\end{array}\right), \arg (\zeta) \in\left(-\frac{\pi}{2},-\pi\right), \\
& \left(\begin{array}{cc}
D_{\nu}(2 \zeta) & -b D_{-\nu-1}(2 \mathrm{i} \zeta) \\
d D_{\nu-1}(2 \zeta) & D_{-\nu}(2 \mathrm{i} \zeta)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\pi \mathrm{i} \nu / 2}
\end{array}\right), \quad \arg (\zeta) \in\left(0,-\frac{\pi}{2}\right) .
\end{aligned}
$$

Case $\operatorname{Re}(\nu)=\frac{1}{2}$
In this case, (5) holds for $n \in \mathbb{N}_{\rho}^{*}$ large enough, where \mathbb{N}_{ρ}^{*} is a further restricted (necessarily so!) to ndices that satisfy the condition ρ (1 functions are explicitly ${ }^{\prime}$ known)

In this case, (5) holds with

$$
v_{n i}(z)=\frac{L_{n i}}{z}+\mathcal{O}\left(n^{-d_{\nu, \ell}}\right),
$$

where $L_{n i}$ are bounded and the error estimate holds locally uniformly in $\overline{\mathbb{C}} \backslash\{0\}$ (uniformly in $\overline{\mathbb{C}}$ when

References

[1] A.I. Aptekrevev and M. Yattselev. Padé approximants for functions with branch points strong asymptotics of Nuttall-
Stanh polynomials. Acta Math, $215(2) 2: 2717280,2015$. [2] A.S. Fokas, A.R. Its, and A.v. Kit
Math. Phys., 142(2):313344, 1991.
[3] A.S. Fokas, A.R. Its, and A.V. Kitae.
Math. Phys., $147(2): 395430,1992$.
${ }^{[4]}$ A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, and M. Vanlessen. The Rewann-Hibert approach to strong
asymptotics for orthogonal polynomials on [1,1]] Adv. Math., 188(2):337398, 2004

325338, 1985.
${ }_{\text {[6 }}^{\text {[6 H. Stahl. Struc }}$
. Stan. Orthogonal polynomials with complex valued weight function. I, II. Constr. Approx., 2(3):225240, 24125

