Asymptotics of Jacobi-Type Orthogonal Polynomials

The Case of the Cross.

Ahmad Barhoumi (joint work with Maxim Yattselev) Indiana U - Purdue U, Indianapolis

abarhoum@iupui.edu

Abstract

We investigate asymptotic behavior of polynomials $Q_n(z)$ satisfying non-Hermitian orthogonality relations

$$\int_{\Delta} s^k Q_n(s) \rho(s) \mathrm{d}s = 0, \quad k \in \{0, \dots, n-1\},$$

where $\Delta := [-a, a] \cup [-ib, ib], a, b > 0$, and $\rho(s)$ is a Jacobi-type weight. The primary motivation for this work is study of the convergence properties of the Padé approximants to functions of the form

 $f(z) = (z - a)^{\alpha_1} (z - ib)^{\alpha_2} (z + a)^{\alpha_3} (z + ib)^{\alpha_4},$

where the exponents $\alpha_i \notin \mathbb{Z}$ add up to an integer.

Class \mathcal{W}_{ℓ}

Let ℓ be a positive integer or infinity. We shall say that a function $\rho(s)$ on Δ belongs to the class \mathcal{W}_{ℓ} if

(i) $\rho_i(s) := \rho_{|\Delta_i}(s)$ factors as a product $\rho_i(s) = \rho_i^*(s)(s-a_i)^{\alpha_i}$, where the function $\rho_i^*(z)$ is non-vanishing and holomorphic in some neighborhood of Δ_i , $\alpha_i > -1$, and $(z - a_i)^{\alpha_i}$ is a branch holomorphic across $\Delta \setminus \{a_i\}, i \in \{1, 2, 3, 4\};$

(ii) in some neighborhood of the origin it holds that $(\rho_1 \rho_3)(z) = c(\rho_2 \rho_4)(z)$ for some constant c; (iii) it holds that $\rho_1(0) + \rho_2(0) + \rho_3(0) + \rho_4(0) = 0$;

(iv) the quantities $\rho_i^{(l)}(0) / \rho_i(0), 0 \le l < \ell$, do not depend on $i \in \{1, 2, 3, 4\}$.

Padé Approximation

For an integrable weight $\rho(s)$ on Δ define

$$\widehat{\rho}(z) := \frac{1}{2\pi i} \int_{\Delta} \frac{\rho(s) ds}{s-z}, \quad z \in \overline{\mathbb{C}} \setminus \Delta.$$

In particular, it can be readily verified that the functions

$$\sum_{i=1}^{4} C_i \log(z - a_i) \text{ and } \prod_{i=1}^{4} (z - a_i)^{\alpha_i},$$

where the constants C_i add up to zero and the exponents $-1 < \alpha_i \notin \mathbb{Z}$ add up to an integer, possess branches holomorphic off Δ that can be represented by (2) for certain weight functions in \mathcal{W}_{∞} (the second function can represented by (2) up to an addition of a polynomial).

Given $\hat{\rho}(z)$ as in (2), it follows from the orthogonality relations (1) that there exists a polynomial $P_n(z)$ of degree at most n-1 such that

$$R_n(z) := (Q_n \widehat{\rho})(z) - P_n(z) = \mathcal{O}(z^{-n-1}) \text{ as } z \to \infty.$$

The rational function $[n/n]_{\widehat{\rho}}(z) := P_n(z)/Q_n(z)$ is called the *n*-th diagonal Padé approximant to $\widehat{\rho}(z)$.

Baker-Akhiezer Functions

To state the main results requires the introduction of functions $\Psi_n^{(j)}(z)$, known as *Baker - Akhiezer* functions. Their main properties are:

- $\Psi_n^{(j)}$ are sectionally meromorphic on the Riemann surface \Re of $w^2 = (z^2 a^2) (z^2 a^2)$
- $\Psi_n^{(0)}$ is geometrically large on closed subsets of the complement of Δ .
- $\Psi_n^{(0)}$ has the divisor $(n-1)\infty^{(1)} \mathcal{D}_n n\infty^{(0)}$, where \mathcal{D}_n is a positive divisor of degree 1.
- In this setting, \mathcal{D}_n depends only on the parity of n. It will be important that $\mathcal{D}_n \neq \infty^{(0)}$
- This can be guaranteed along one of three subsequences (depending only on ρ): $\mathbb{N}_{\rho} = \mathbb{N}, 2\mathbb{N}, \mathbb{N} \setminus 2\mathbb{N}$.

(1)

(2)

$$(z^2 + b^2).$$

Main Result

Choose branches of the logarithm such that

$$\nu := \frac{1}{2\pi \mathrm{i}} \sum_{i=1}^{4} (-1)^i \log \rho_i(0) \quad \text{satisfies } \operatorname{Re}(\nu) \in \left(-\frac{1}{2}, \frac{1}{2}\right].$$
(4)

Let $\rho(s) \in \mathcal{W}_{\ell}$, where ℓ is a positive integer or infinity, be such that $\operatorname{Re}(\nu) \in (-1/2, 1/2)$. Then it holds for all $n \in \mathbb{N}_{\rho}$ large enough that

$$Q_n(z) = \gamma_n \left(1 + \upsilon_{n1}(z) \right) \Psi_n \left(z^{(0)} \right) + \gamma_n \upsilon_{n2}(z) \Psi_{n-1} \left(z^{(0)} \right)$$
(5)

locally uniformly in $\overline{\mathbb{C}} \setminus \Delta$, where γ_n is given explicitly in terms of theta functions, $v_{ni}(\infty) = 0$, and

$$v_{ni}(z) = \mathcal{O}(n^{-d_{\nu,\ell}}), \quad d_{\nu,\ell} := \left(\frac{1}{2} - |\operatorname{Re}(\nu)|\right) \frac{\ell - 2|\operatorname{Re}(\nu)|}{\ell + 1 - 2|\operatorname{Re}(\nu)|}$$

locally uniformly in $\overline{\mathbb{C}} \setminus \{0\}$ (uniformly in $\overline{\mathbb{C}}$ when $\ell = \infty$). In particular, polynomials $Q_n(z)$ have degree n for all $n \in \mathbb{N}_{\rho}$ large enough.

Riemann-Hilbert Problem

Just as was first done by Fokas, Its, and Kitaev [2, 3], we connect the orthogonal polynomials $Q_n(z)$ to a 2×2 matrix Riemann-Hilbert problem. To this end, suppose that the index n is such that

$$\deg Q_n = n \quad \text{and} \quad R_{n-1}(z) \sim z^{-n} \quad \text{as} \quad z \to \infty, \tag{6}$$

where $R_n(z)$ is given by (3). Furthermore, let

$$\mathbf{Y}(z) := \begin{pmatrix} Q_n(z) & R_n(z) \\ k_{n-1}Q_{n-1}(z) & k_{n-1}R_{n-1}(z) \end{pmatrix},$$
(7)

where k_{n-1} is a constant such that $k_{n-1}R_{n-1}(z) = z^{-n}(1 + o(1))$ near infinity. Then Y(z) solves the following Riemann-Hilbert problem (RHP-Y):

(a) $\mathbf{Y}(z)$ is analytic in $\mathbb{C} \setminus \Delta$ and $\lim_{z \to \infty} \mathbf{Y}(z) z^{-n\sigma_3} = \mathbf{I}$.

(b) $\mathbf{Y}(z)$ has continuous traces on Δ° that satisfy

$$\boldsymbol{Y}_{+}(s) = \boldsymbol{Y}_{-}(s) \begin{pmatrix} 1 & \rho(s) \\ 0 & 1 \end{pmatrix},$$

(c) $\mathbf{Y}(z)$ is bounded around the origin. Near a_i 's the first column is bounded, while the second column is bounded for $\alpha_i > 0$, possesses a logarithmic singularity for $\alpha_i = 0$, and a power singularity (i.e. $\sim |z - a_i|^{\alpha_i}$) for $\alpha_i > 0$.

Figure 1: The opening of the "lenses."

Model Problem

A key step in the analysis is to identify a matrix function, denoted $\Psi_{s_1,s_2}(\zeta)$, that satisfies the following jump conditions:

$$s \in \Delta^{\circ}$$
.

Figure 2: Contour for final Riemann-Hilbert problem.

$$\begin{pmatrix} 1 & 0 \\ e^{2\pi i\nu} s_2 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & 0 \\ s_2 & 1 \end{pmatrix} \land \qquad \begin{pmatrix} 1 & 0 \\ s_2 & 1 \end{pmatrix}$$

(we slightly abuse the notation here as the parameter ν has already been fixed in (4); however, we shall use the construction below with parameters s_1, s_2 such that (8) holds with ν from (4)). Define constants b, d by

$$b:=-s_1\frac{\Gamma(1+\nu)}{\sqrt{2\pi}} \quad \text{and} \quad d:=-s_2e^{\nu\pi\mathrm{i}}\frac{\Gamma(1-\nu)}{\sqrt{2\pi}},$$

where $\Gamma(z)$ is the standard Gamma function. Denote by $D_{\mu}(\zeta)$ the parabolic cylinder function in Whittaker's notations. Then, the matrix function $\Psi_{s_1,s_2}(\zeta)$ is given by

$$\begin{pmatrix} D_{\nu}(2\zeta) & bD_{-\nu-1}(-2i\zeta) \\ dD_{\nu-1}(2\zeta) & D_{-\nu}(-2i\zeta) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-\pi i\nu/2} \end{pmatrix}, \quad \arg(\zeta) \in \left(0, \frac{\pi}{2}\right),$$

$$\begin{pmatrix} D_{\nu}(-2\zeta) & bD_{-\nu-1}(-2i\zeta) \\ -dD_{\nu-1}(-2\zeta) & D_{-\nu}(-2i\zeta) \end{pmatrix} \begin{pmatrix} e^{\pi i\nu} & 0 \\ 0 & e^{-\pi i\nu/2} \end{pmatrix}, \arg(\zeta) \in \left(\frac{\pi}{2}, \pi\right),$$

$$\begin{pmatrix} D_{\nu}(-2\zeta) & -bD_{-\nu-1}(2i\zeta) \\ -dD_{\nu-1}(-2\zeta) & D_{-\nu}(2i\zeta) \end{pmatrix} \begin{pmatrix} e^{-\pi i\nu} & 0 \\ 0 & e^{\pi i\nu/2} \end{pmatrix}, \arg(\zeta) \in \left(-\frac{\pi}{2}, -\pi\right),$$

$$\begin{pmatrix} D_{\nu}(2\zeta) & -bD_{-\nu-1}(2i\zeta) \\ dD_{\nu-1}(2\zeta) & D_{-\nu}(2i\zeta) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i\nu/2} \end{pmatrix}, \qquad \arg(\zeta) \in \left(0, -\frac{\pi}{2}\right).$$

Case $\operatorname{Re}(\nu) = \frac{1}{2}$

In this case, (5) holds for $n \in \mathbb{N}_{\rho}^*$ large enough, where \mathbb{N}_{ρ}^* is a further restricted (necessarily so!) to indices that satisfy the condition (all functions are explicitly known):

$$\mathbb{N}_{\rho}^{*}(\varepsilon) := \left\{ n \in \mathbb{N}_{\rho} : \left| \left(\frac{ab}{2n} \right)^{\operatorname{Im}(\nu)} - (-1)^{\iota_{j(n)}} S^{2}(0) \Phi(\boldsymbol{z}_{j(n)}) \Phi^{2(n-1)}(0^{(1)}) \right| > \varepsilon \right\}$$

In this case, (5) holds with

 v_n

where L_{ni} are bounded and the error estimate holds locally uniformly in $\overline{\mathbb{C}} \setminus \{0\}$ (uniformly in $\overline{\mathbb{C}}$ when $\ell = \infty$).

References

- Stahl polynomials. Acta Math., 215(2):217280, 2015.
- Math. Phys., 142(2):313344, 1991.
- Math. Phys., 147(2):395430, 1992.
- asymptotics for orthogonal polynomials on [1,1]. Adv. Math., 188(2):337398, 2004.
- 325338, 1985.
- 4:339356, 1985.
- 1986.

Figure The jumps of 3: $\Psi_{s_1,s_2}(\zeta)$ over the corresponding contours.

Here, $s_1, s_2 \in \mathbb{C}$ are independent parameters related to $\nu \in \mathbb{C}$, $\operatorname{Re}(\nu) \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ by

$$e^{-2\pi i\nu} := 1 - s_1 s_2$$

(8)

$$L_i(z) = \frac{L_{ni}}{z} + \mathcal{O}\left(n^{-d_{\nu,\ell}}\right),$$

^[1] A.I. Aptekarev and M. Yattselev. Padé approximants for functions with branch points strong asymptotics of Nuttall-[2] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Painlevé equations and their appearance in quantum gravity. Comm. [3] A.S. Fokas, A.R. Its, and A.V. Kitaev. The isomonodromy approach to matrix models in 2D quantum gravitation. Comm.

^[4] A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, and M. Vanlessen. The Riemann-Hilbert approach to strong [5] H. Stahl. Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4:311324, [6] H. Stahl. Structure of extremal domains associated with an analytic function. Complex Variables Theory Appl.,

^[7] H. Stahl. Orthogonal polynomials with complex valued weight function. I, II. Constr. Approx., 2(3):225240, 241251,