Large gap asymptotics for the Bessel kernel determinant

Elliot Blackstone

University of Michigan

October 15, 2023

Collaborators

This is joint work with Christophe Charlier (Lund University) and Jonatan Lenells (KTH Royal Institute of Technology).

An example Riemann-Hilbert problem

Given a smooth, oriented curve S in the complex plane and a Hölder continuous function $\phi(z)$ on S, find a function $\Psi(z)$, analytic on $\mathbb{C} \backslash S$, which satisfies

$$
\Psi_{+}(z)-\Psi_{-}(z)=\phi(z), \quad z \in S
$$

A solution is given by the Sokhotski-Plemelj formula:

$$
\Psi(z)=\frac{1}{2 \pi i} \int_{S} \frac{\phi(w)}{w-z} d w
$$

Let $\left.\mathcal{K}\right|_{\mathcal{I}}$ be the trace class operator with the kernel

$$
K(x, y)=\frac{J_{\alpha}(\sqrt{x}) \sqrt{y} J_{\alpha}^{\prime}(\sqrt{y})-\sqrt{x} J_{\alpha}^{\prime}(\sqrt{x}) J_{\alpha}(\sqrt{y})}{2(x-y)}
$$

acting on $L^{2}(\mathcal{I})$, where J_{α} is the Bessel function of the first kind with order $\alpha>-1$, and $\mathcal{I} \subseteq \mathbb{R}$. The object of study is the Fredholm determinant

$$
F(\mathcal{I})=\operatorname{det}\left(I-\left.\mathcal{K}\right|_{\mathcal{I}}\right)
$$

which represents a gap probability for the Bessel point process. Let

$$
\mathcal{I}_{g}:=\left(0, x_{1}\right) \cup\left(x_{2}, x_{3}\right) \cup \cdots \cup\left(x_{2 g}, x_{2 g+1}\right) .
$$

We study the gap probability $F\left(r \mathcal{I}_{g}\right)$ in the limit $r \rightarrow+\infty$, i.e. we wish to obtain the large gap asymptotics.

Results for $g=0$

Theorem (Tracy, Widom '94)

Let $\mathcal{I}_{0}=\left(0, x_{1}\right)$ and $\alpha>-1$. As $r \rightarrow+\infty$,

$$
F\left(r \mathcal{I}_{0}\right)=\exp \left(-\frac{r x_{1}}{4}+\alpha \sqrt{r x_{1}}-\frac{\alpha^{2}}{4} \log r+C_{0}+\mathcal{O}\left(r^{-\frac{1}{2}}\right)\right)
$$

where α and C_{0} are independent of r.

Results for $g=0$

Theorem (Tracy, Widom '94)

Let $\mathcal{I}_{0}=\left(0, x_{1}\right)$ and $\alpha>-1$. As $r \rightarrow+\infty$,

$$
F\left(r \mathcal{I}_{0}\right)=\exp \left(-\frac{r x_{1}}{4}+\alpha \sqrt{r x_{1}}-\frac{\alpha^{2}}{4} \log r+C_{0}+\mathcal{O}\left(r^{-\frac{1}{2}}\right)\right)
$$

where α and C_{0} are independent of r.

Theorem (Ehrhardt $\alpha \in(-1,1),{ }^{\prime} 10$, Deift, Krasovsky, Vasilevska $\alpha>-1$, '11)

The constant C_{0} is given by

$$
C_{0}=G(1+\alpha)(2 \pi)^{-\frac{\alpha}{2}}-\frac{\alpha^{2}}{4} \log x_{1},
$$

where G denote the Barnes' G-function.

Differential Identity

$\left.\mathcal{K}\right|_{\mathcal{I}_{1}}$ is an operator with an integrable kernel (in the sense of Its et al.)! This means its resolvent kernel can be expressed in terms of the solution of a RHP.

Theorem (B., Charlier, Lenells '23)

Let $0<x_{1}<x_{2}<x_{3}<+\infty$ be fixed. We have the identity

$$
\partial_{r} \log F\left(r \mathcal{I}_{1}\right)=\frac{1}{2 i r} \Phi_{1,12}(r)+\frac{1}{16 r},
$$

where $\Phi_{1}(r)=\Phi_{1}(r ; \vec{x})$ is defined by

$$
\Phi_{1}(r)=\lim _{z \rightarrow \infty} r z\left(\Phi(z) e^{-\sqrt{r z} \sigma_{3}} M^{-1}(r z)^{\frac{\sigma_{3}}{4}}-I\right), \quad M=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and $\Phi(\cdot)=\Phi(\cdot ; r, \vec{x})$ is the unique solution of the following RH problem.

RHP for Φ

RH problem for $\Phi(\cdot)=\Phi(\cdot ; r, \vec{x})$
(a) $\Phi: \mathbb{C} \backslash \Sigma_{\Phi} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic, where the contour Σ_{Φ} is shown in the next slide.
(b) We have the jump conditions

$$
\Phi_{+}(z)=\Phi_{-}(z) J_{\Phi}(z), \quad z \in \Sigma_{\Phi}
$$

(c) As $z \rightarrow \infty$, we have

$$
\Phi(z)=\left(I+\mathcal{O}\left(z^{-1}\right)\right)(r z)^{-\frac{\sigma_{3}}{4}} M e^{\sqrt{r z} \sigma_{3}}
$$

where the principal branch is chosen for each fractional power.
(d) As $z \rightarrow-x_{j}, j=1,2,3$, we have $\Phi(z)=\mathcal{O}\left(\log \left(z+x_{j}\right)\right)$.

Normalize Φ at $z=\infty$

To normalize $\Phi(z)$ at $z=\infty$, we introduce a \mathfrak{g}-function, so it should have the behavior

$$
\mathfrak{g}(z)=\sqrt{z}\left(1+\mathcal{O}\left(z^{-1}\right)\right), \quad z \rightarrow \infty
$$

The idea is to define a new function

$$
\tilde{T}(z)=\Phi(z) e^{-\sqrt{r} \mathfrak{g}(z) \sigma_{3}}
$$

We see that $\mathfrak{g}(z)$ has a branch cut at $z=\infty$. Let's try to choose the jumps of $\mathfrak{g}(z)$ to our advantage. Now we can compute the jumps of $\tilde{T}(z)$; for example, when $z \in\left(-\infty,-x_{3}\right)$,

$$
\begin{aligned}
\tilde{T}_{+}(z) & =\Phi_{+}(z) e^{-\sqrt{r} \mathfrak{g}_{+}(z) \sigma_{3}} \\
& =\Phi_{-}(z) e^{-\sqrt{r} \mathfrak{g}_{-}(z) \sigma_{3}} e^{\sqrt{r} \mathfrak{g}_{-}(z) \sigma_{3}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) e^{-\sqrt{r} \mathfrak{g}_{+}(z) \sigma_{3}} \\
& =\tilde{T}_{-}(z)\left(\begin{array}{cc}
0 & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right) \sigma_{3}} \\
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right) \sigma_{3}}
\end{array}\right) .
\end{aligned}
$$

Choosing the jumps of $\mathfrak{g}(z)$

Assuming $\mathfrak{g}(z)$ has jumps only on $\left(-\infty,-x_{1}\right)$, we find that $\tilde{T}(z)$ has the jumps

$$
\tilde{T}_{+}(z)=\tilde{T}_{-}(z)\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} \\
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} & 0
\end{array}\right), & z \in\left(-\infty,-x_{3}\right) \\
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right) \sigma_{3}}, & z \in\left(-x_{3},-x_{2}\right) \\
\left(\begin{array}{cc}
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right)} & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} \\
0 & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right)}
\end{array}\right), & z \in\left(-x_{2},-x_{1}\right)
\end{array}\right.
$$

Choosing the jumps of $\mathfrak{g}(z)$

Assuming $\mathfrak{g}(z)$ has jumps only on $\left(-\infty,-x_{1}\right)$, we find that $\tilde{T}(z)$ has the jumps

$$
\tilde{T}_{+}(z)=\tilde{T}_{-}(z)\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} \\
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} & 0
\end{array}\right), & z \in\left(-\infty,-x_{3}\right) \\
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right) \sigma_{3}}, & z \in\left(-x_{3},-x_{2}\right) \\
\left(\begin{array}{cc}
e^{-\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right)} & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)\right)} \\
0 & e^{\sqrt{r}\left(\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)\right)}
\end{array}\right), & z \in\left(-x_{2},-x_{1}\right)
\end{array}\right.
$$

Thus, let's determine $\mathfrak{g}(z)$ by the conditions
(1) $\mathfrak{g}(z)$ is analytic for $z \in \mathbb{C} \backslash\left(-\infty,-x_{1}\right)$,
(2) $\mathfrak{g}(z)=\sqrt{z}\left(1+\mathcal{O}\left(z^{-1}\right)\right)$ as $z \rightarrow \infty$,
(3) $\mathfrak{g}(z)$ has the jump conditions

$$
\begin{array}{ll}
\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)=0, & z \in\left(-\infty,-x_{3}\right) \cup\left(-x_{2},-x_{1}\right) \\
\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)=i \Omega, & z \in\left(-x_{3},-x_{2}\right)
\end{array}
$$

where Ω is a constant.

Determining $\mathfrak{g}(z)$!

Let's use the Sokhotski-Plemelj formula to determine $\mathfrak{g}(z)$! Differentiating the jump conditions for $\mathfrak{g}(z)$, we have

$$
\begin{array}{ll}
\mathfrak{g}_{+}^{\prime}(z)+\mathfrak{g}_{-}^{\prime}(z)=0, & z \in\left(-\infty,-x_{3}\right) \cup\left(-x_{2},-x_{1}\right), \\
\mathfrak{g}_{+}^{\prime}(z)-\mathfrak{g}_{-}^{\prime}(z)=0, & z \in\left(-x_{3},-x_{2}\right) .
\end{array}
$$

Define $\sqrt{\mathcal{R}(z)}:=\sqrt{\left(z+x_{1}\right)\left(z+x_{2}\right)\left(z+x_{3}\right)}$ with $\mathcal{R}(z)>0$ for $z>-x_{1}$ and jumps

$$
\sqrt{\mathcal{R}(z)}_{+}+\sqrt{\mathcal{R}(z)}_{-}=0, \quad z \in\left(-\infty,-x_{3}\right) \cup\left(-x_{2},-x_{1}\right) .
$$

Now notice that

$$
\left(\mathfrak{g}^{\prime}(z) \sqrt{\mathcal{R}(z)}\right)_{+}-\left(\mathfrak{g}^{\prime}(z) \sqrt{\mathcal{R}(z)}\right)_{-}=0, \quad z \in\left(-\infty,-x_{1}\right)
$$

For $\mathfrak{g}(z)$ to have the correct behavior at $z=\infty$, we must have

$$
\mathfrak{g}^{\prime}(z)=\frac{q_{1} z+q_{0}}{\sqrt{\mathcal{R}(z)}}
$$

$\mathfrak{g}(z)$ function

$$
\mathfrak{g}(z)=\int_{-x_{1}}^{z} \frac{\frac{s}{2}+q_{0}}{\sqrt{\mathcal{R}(s)}} d s, \quad \text { where } q_{0} \text { is defined by } \int_{-x_{3}}^{-x_{2}} \frac{\frac{s}{2}+q_{0}}{\sqrt{\mathcal{R}(s)}} d s=0
$$

The \mathfrak{g}-function has the following properties:
(1) The \mathfrak{g}-function is analytic in $\mathbb{C} \backslash\left(-\infty,-x_{1}\right]$ and satisfies $\mathfrak{g}(z)=\overline{\mathfrak{g}(\bar{z})}$.
(2) The \mathfrak{g}-function satisfies the jump conditions

$$
\begin{array}{ll}
\mathfrak{g}_{+}(z)+\mathfrak{g}_{-}(z)=0, & z \in\left(-\infty,-x_{3}\right) \cup\left(-x_{2},-x_{1}\right), \\
\mathfrak{g}_{+}(z)-\mathfrak{g}_{-}(z)=i \Omega, & z \in\left(-x_{3},-x_{2}\right),
\end{array}
$$

where $\Omega=2 \int_{-x_{2}}^{-x_{1}} \frac{\frac{s}{2}+q_{0}}{|\mathcal{R}(s)|^{\frac{1}{2}}} d s>0$.
(3) As $z \rightarrow \infty, z \notin\left(-\infty,-x_{3}\right)$, we have

$$
\mathfrak{g}(z)=\sqrt{z}-\frac{2 c}{\sqrt{z}}+\mathcal{O}\left(z^{-3 / 2}\right), \quad c:=q_{0}-\frac{x_{1}+x_{2}+x_{3}}{4}
$$

(9) $\operatorname{Re} \mathfrak{g}(z) \geq 0$ for $z \in \mathbb{C}$ with equality only when $z \in\left(-\infty,-x_{3}\right] \cup\left[-x_{2},-x_{1}\right]$.

Normalize $\Phi(z)$ at $z=\infty$ by defining $T(z):=\left(\begin{array}{cc}1 & 0 \\ -2 i c \sqrt{r} & 1\end{array}\right) r^{\frac{\sigma_{3}}{4}} \Phi(z) e^{-\sqrt{r} \mathfrak{g}(z) \sigma_{3}}$.

RHP for T

RH problem for $T(\cdot)=T(\cdot ; r, \vec{x})$
(a) $T: \mathbb{C} \backslash \Sigma_{T} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic.
(b) The jumps for T are given by

$$
T_{+}(z)=T_{-}(z) J_{T}(z), \quad z \in \Sigma_{T}
$$

(c) As $z \rightarrow \infty$, we have

$$
T(z)=\left(I+\frac{T_{1}}{z}+\mathcal{O}\left(z^{-2}\right)\right) z^{-\frac{\sigma_{3}}{4}} M
$$

(d) $T(z)=\mathcal{O}\left(\log \left(z+x_{j}\right)\right)$ as $z \rightarrow-x_{j}, j=1,2,3$.

Opening lenses

Notice that

$$
\left(\begin{array}{cc}
e^{-2 \sqrt{r} \mathfrak{g}_{+}(z)} & 1 \\
0 & e^{-2 \sqrt{r} \mathfrak{g}_{-}(z)}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
e^{-2 \sqrt{r} \mathfrak{g}_{-}(z)} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
e^{-2 \sqrt{r} \mathfrak{g}_{+}(z)} & 1
\end{array}\right) .
$$

We now open the 'lenses' by defining the new matrix

$$
S(z):=T(z) \begin{cases}\left(\begin{array}{cc}
1 & 0 \\
-e^{-2 \sqrt{r} \mathfrak{g}(z)} & 1
\end{array}\right), & z \in \mathcal{L} \text { and } \operatorname{Im} z>0 \\
\left(\begin{array}{cc}
1 & 0 \\
e^{-2 \sqrt{r} \mathfrak{g}(z)} & 1
\end{array}\right), & z \in \mathcal{L} \text { and } \operatorname{Im} z<0 \\
I, & \text { otherwise }\end{cases}
$$

RHP for S

RH problem for $S(\cdot)=S(\cdot ; r, \vec{x})$
(a) $S: \mathbb{C} \backslash \Sigma_{S} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic.
(b) The jumps for S are given by

$$
S_{+}(z)=S_{-}(z) J_{S}(z), \quad z \in \Sigma_{S}
$$

(c) As $z \rightarrow \infty$, we have

$$
S(z)=\left(I+\frac{T_{1}}{z}+\mathcal{O}\left(z^{-2}\right)\right) z^{-\frac{\sigma_{3}}{4}} M
$$

(d) $S(z)=\mathcal{O}\left(\log \left(z+x_{j}\right)\right)$ as $z \rightarrow-x_{j}, j=1,2,3$.

Global parametrix $P^{(\infty)}$

$$
\xrightarrow{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)} \xrightarrow[-x_{3}]{e_{-x_{2}}^{-i \Omega \sqrt{r} \sigma_{3}}} \quad{ }_{-x_{1}}^{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}
$$

RH problem for $P^{(\infty)}$
(a) $P^{(\infty)}: \mathbb{C} \backslash\left(-\infty,-x_{1}\right] \rightarrow \mathbb{C}^{2 \times 2}$ is analytic.
(b) The jumps for $P^{(\infty)}$ are given by

$$
\begin{array}{ll}
P_{+}^{(\infty)}(z)=P_{-}^{(\infty)}(z)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), & z \in\left(-\infty,-x_{3}\right) \cup\left(-x_{2},-x_{1}\right), \\
P_{+}^{(\infty)}(z)=P_{-}^{(\infty)}(z) e^{-i \Omega \sqrt{r} \sigma_{3}}, & z \in\left(-x_{3},-x_{2}\right),
\end{array}
$$

(c) As $z \rightarrow \infty$, we have

$$
\begin{equation*}
P^{(\infty)}(z)=\left(I+\frac{P_{1}^{(\infty)}}{z}+\mathcal{O}\left(z^{-2}\right)\right) z^{-\frac{\sigma_{3}}{4}} M \tag{1}
\end{equation*}
$$

(d) As $z \rightarrow-x_{j}, j=1,2,3$, we have $P^{(\infty)}(z)=\mathcal{O}\left(\left(z+x_{j}\right)^{-\frac{1}{4}}\right)$.

This RHP is explicitly solvable in terms of Jacobi θ-functions!

Let \mathcal{D}_{j} be a small neighborhood of $-x_{j}, j=1,2,3$. We approximate $S(z)$ with a local parametrix $P^{\left(-x_{j}\right)}(z)$ so that:
(1) $P^{\left(-x_{j}\right)}(z)$ has the (exact) same jumps as $S(z)$ for $z \in \mathcal{D}_{j}$.
(2) $S(z) P^{\left(-x_{j}\right)}(z)^{-1}=\mathcal{O}(1)$ as $z \rightarrow-x_{j}$.
© $P^{\left(-x_{j}\right)}$ "matches" with $P^{(\infty)}$, in the sense that

$$
P^{\left(-x_{j}\right)}(z)=(I+o(1)) P^{(\infty)}(z) \quad \text { as } r \rightarrow+\infty
$$

uniformly for $z \in \partial \mathcal{D}_{j}$.
The local parametrices $P^{\left(-x_{j}\right)}(z)$ can be explicitly constructed in terms of Bessel functions!

Small norm problem

Define the error matrix

$$
R(z):= \begin{cases}S(z) P^{\left(-x_{j}\right)}(z)^{-1}, & z \in \mathcal{D}_{j}, j=1,2,3 \\ S(z) P^{(\infty)}(z)^{-1}, & z \in \mathbb{C} \backslash \bigcup_{j=1}^{3} \mathcal{D}_{j}\end{cases}
$$

The jumps of $R(z)$ on Σ_{R} is denoted $J_{R}(z)$ and has the properties

$$
J_{R}(z)= \begin{cases}I+\mathcal{O}\left(e^{-\tilde{c}|r z|^{\frac{1}{2}}}\right) & \text { as } r \rightarrow+\infty \text { uniformly for } z \in \Sigma_{R} \backslash\left(\cup_{j=1}^{3} \partial \mathcal{D}_{j}\right), \\ I+\frac{J_{R}^{(1)}(z)}{\sqrt{r}}+\mathcal{O}\left(r^{-1}\right) & \text { as } r \rightarrow+\infty \text { uniformly for } z \in \cup_{j=1}^{3} \partial \mathcal{D}_{j}\end{cases}
$$

It follows from the small-norm theory of RHPs that

$$
R(z)=I+\frac{R^{(1)}(z)}{\sqrt{r}}+\mathcal{O}\left(r^{-1}\right) \quad \text { as } r \rightarrow+\infty \text { uniformly for } z \in \mathbb{C} \backslash \Sigma_{R}
$$

Putting the pieces together

We can now unravel our transformations to get the expression

$$
\Phi(z)=r^{-\frac{\sigma_{3}}{4}}\left(\begin{array}{cc}
1 & 0 \\
2 i c \sqrt{r} & 1
\end{array}\right) R(z) P^{(\infty)}(z) e^{\sqrt{r} \mathfrak{g}(z) \sigma_{3}} .
$$

Now we can compute the residue and obtain

$$
\frac{\Phi_{1,12}(r)}{2 i r}=c+\frac{P_{1,12}^{(\infty)}}{2 i \sqrt{r}}+\frac{R_{1,12}^{\left(\frac{1}{2}\right)}}{2 i r}+\mathcal{O}\left(r^{-\frac{3}{2}}\right) \quad \text { as } r \rightarrow+\infty
$$

where $R_{1,12}^{\left(\frac{1}{2}\right)}$ is obtained from $R^{(1)}(z)$.

Lemma

As $r \rightarrow+\infty$,

$$
\frac{\Phi_{1,12}(r)}{2 i r}=\frac{d}{d r}\left[c r+\log \theta\left(-\frac{\Omega \sqrt{t}}{2 \pi}\right)-\frac{1}{32} \sum_{j=1}^{3} \int_{M}^{r} \mathcal{B}\left(-x_{j},-\frac{\Omega \sqrt{t}}{2 \pi}\right) \frac{d t}{t}\right]+\mathcal{O}\left(r^{-\frac{3}{2}}\right)
$$

where $M>0$ is independent of r and \mathcal{B} is a ratio of θ-functions.

Result for $g=1, \alpha=0$

The integrals of \mathcal{B} can be computed using properties of θ-functions. We find that

$$
\int_{M}^{r} \mathcal{B}\left(-x_{j},-\frac{\Omega \sqrt{t}}{2 \pi}\right) \frac{d t}{t}=2 \log (r)+\tilde{C}_{j}+\mathcal{O}\left(r^{-1}\right)
$$

Thus, we reach our result:

Theorem

Let $g=1, \alpha=0$ and fix $0<x_{1}<x_{2}<x_{3}<+\infty$. As $r \rightarrow+\infty$,

$$
F\left(r \mathcal{I}_{1}\right)=\exp \left(c r-\frac{1}{8} \log r+\log \theta\left(-\frac{\Omega \sqrt{r}}{2 \pi}\right)+C+\mathcal{O}\left(r^{-\frac{1}{2}}\right)\right)
$$

where C is independent of r.

Result for $g \geq 0, \alpha>-1$

Theorem (B., Charlier, Lenells '23)

Let $0<x_{1}<x_{2}<\cdots<x_{2 g+1}<\infty$ and $\alpha>-1$ be fixed. Then, for almost all choices of $x_{1}, x_{2}, \ldots, x_{2 g+1}$, as $r \rightarrow+\infty$,

$$
F\left(r \mathcal{I}_{g}\right)=\exp \left(c r-d_{1}(\alpha) \sqrt{r}-\frac{g+2 \alpha^{2}}{8} \log r+\log \Theta(\vec{\nu}(r))+C+\mathcal{O}\left(r^{-\frac{1}{2}}\right)\right)
$$

where C is independent of r and $\Theta(\cdot)$ is the Riemann Θ-function. For $g=0$, we understand that $\Theta(\cdot) \equiv 1$.

The integral term in the $g>1$ case is significantly more challenging. One must understand the winding of a g-dimensional torus. A novelty was the use of Birkoff's ergodic theorem.

References

T
E. Blackstone, C. Charlier, and J. Lenells, The Bessel kernel determinant on large intervals and Birkhoff's ergodic theorem. Comm. Pure Appl. Math. 76 (2023), 3300-3345.
P. Deift, I. Krasovsky, and J. Vasilevska, Asymptotics for a determinant with a confluent hypergeometric kernel, Int. Math. Res. Not. 9 (2011), 2117-2160.
P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. 137 (1993), 295-368.
A. Its, A. Izergin, V. Korepin, and N. Slavnov, Differential equations for quantum correlation functions. Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, 1990.
C. Tracy and H. Widom, Level-spacing distributions and the Bessel kernel. Comm. Math. Phys. 161 (1994), 289-309.

