Complex Linear Algebra without Complex Numbers
 Adam Coffman

Can one do complex linear algebra without using complex numbers?

Yes ...

You just need a real vector space V together with a real linear operator $J: V \rightarrow V$ satisfying $J^{2}=-I$. Even for $V=\mathbb{R}^{2}$, there are many such J : $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}47 & -34 \\ 65 & -47\end{array}\right],\left[\begin{array}{cc}-5 & 26 \\ -1 & 5\end{array}\right]$,. You could then define a complex vector space by using this formula for scalar multiplication: $(\mathrm{a}+i \mathrm{~b}) \cdot \mathrm{v}=\mathrm{a} \cdot \mathrm{v}+\mathrm{b} \cdot J(\mathrm{v})$, but you don't have to!

But
 .. Why?

In linear algebra over \mathbb{R}, using complex structure operators J is more
convenient than complex scalars when you need to keep track of MORE THAN ONE complex structure. This happens in several contexts:

1. One vector space V can have two complex structures: J_{1} and J_{2}.
a. Maybe they anticommute: $J_{1} J_{2}=-J_{2} J_{1}$.

Then V has a quaternionic structure!
b. Maybe they commute: $J_{1} J_{2}=J_{2} J_{1}$. Then (by the exercise) $J_{1} J_{2}$ is an involution and V is a direct sum of its $+1,-1$ eigenspaces. For a vector v in the (-1)-subspace,

$$
J_{1} J_{2}(\mathrm{v})=-\mathrm{v} \Leftrightarrow J_{2}(\mathrm{v})=J_{1}(\mathrm{v}),
$$

the two complex structures are equal, and similarly on the (+1)-subspace, they are opposite: $J_{2}(\mathrm{v})=-J_{1}(\mathrm{v})$.

PURDUE

College of Arts and Sciences
DEPARTMENT OF MATHEMATICAL SCIENCES

Here's a linear algebra problem you can do in your head!

$$
\begin{gathered}
\text { Assume: } J_{1}^{2}=J_{2}^{2}=-I \\
\text { Prove: } J_{1} J_{2}=J_{2} J_{1} \Leftrightarrow\left(J_{1} J_{2}\right)^{2}=I
\end{gathered}
$$

More information about complex structures is available on my web site: users.pfw.edu/CoffmanA/

For more about linear algebra, complex structures, and the trace, see my Notes on Abstract Linear Algebra For my research on complex structures in geometric analysis, see my joint papers with Yifei Pan or Yuan Zhang
2. Two vector spaces can each have a complex structure: J_{1} on V_{1} and J_{2} on V_{2}. a. The set of real linear maps from V_{1} to V_{2} is also a real vector space, $\operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$, and it has two commuting complex structures:

$$
\mathrm{A} \mapsto \mathrm{~A} \circ J_{1} \quad \text { and } \mathrm{A} \mapsto J_{2} \circ \mathrm{~A} \text {. }
$$

This is a special case of 1 .b.: the subspace where $\mathrm{A} \circ J_{1}=J_{2} \circ \mathrm{~A}$ is the set of maps that are "complex linear" with respect to the complex structures on the domain and target.
b. The real tensor product $\mathrm{V}_{1} \otimes \mathrm{~V}_{2}$ also admits commuting complex structures, $\left[J_{1} \otimes I\right]$ and [$I \otimes J_{2}$]. The subspace where they agree is the complex tensor product.

3. A complex structure may depend on

 variables like position or time.In differential geometry, at points x on a manifold, each tangent space T_{x} may have a complex structure J_{x}. Some of my recent research in geometric analysis considers complex structures that depend
continuously, but not smoothly, on x.

How do I find the Trace of a complex linear map $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{V}$?

You don't.

Even though the scalar-valued Trace is important in both algebra and differential geometry, it turns out not to be a natural concept in this without-
complex-numbers framework. The right way to do things is suggested by Category Theory, where the Generalized Trace of a map $A: V \otimes U \rightarrow V \otimes W$
is another map $\operatorname{Tr}(\mathrm{A}): \mathrm{U} \rightarrow \mathrm{W}$. All you need is:

- an Evaluation map $\quad \varepsilon: H o m(V, W) \otimes V \rightarrow W$ - \&aCo-Evaluation $\quad \eta: U \rightarrow V \otimes \operatorname{Hom}(V, U)$ related by certain identities. $\operatorname{Tr}(\mathrm{A})$ is the composite $U \rightarrow V \otimes H o m(V, U) \rightarrow H o m(V, V \otimes U) \rightarrow H o m(V, V \otimes W) \rightarrow H o m(V, W) \otimes V \rightarrow W$
where the second and fourth arrows are natural isomorphisms and the middle arrow is $\mathrm{F} \mapsto \mathrm{A} \circ \mathrm{F}$. This construction can be adapted to maps that are complex linear with respect to complex structure operators on V, U, and W .

