Strong Szegő Limit Theorems for Bordered and Framed Toeplitz Determinants

Roozbeh Gharakhloo

University of California Santa Cruz

Midwestern Workshop on Asymptotic Analysis IUPUI

October 14, 2023

Introduction and background

Based on :

- Asymptotics of bordered Toeplitz determinants and next-to-diagonal Ising correlations. Journal of Statistical Physics (2022). Estelle Basor, Torsten Ehrhardt, R G, Alexander Its, and Yuqi Li.
- Strong Szegő limit theorems for multi-bordered, framed, and multi-framed Toeplitz determinants. arXiv:2309.14695 (2023). R G.
- ► Deformed Toeplitz and Hankel determinants. In preparation. R G, and Karl Liechty.

The $N \times N$ **Toeplitz** matrix associated to the symbol ϕ is defined as

$$T_{N}[\phi] = \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-N+1} \\ \phi_{1} & \phi_{0} & \cdots & \phi_{-N+2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N-1} & \phi_{N-2} & \cdots & \phi_{0} \end{pmatrix},$$

where ϕ_k 's are the Fourier coefficients of ϕ

$$\phi_k = \int_{\mathbb{T}} z^{-k} \phi(z) \frac{\mathrm{d}z}{2\pi \mathrm{i} z}$$

Let

$$D_N[\phi] := \det T_N[\phi].$$

The large-*N* asymptotics of the Toeplitz determinants are well known and given by the **Szegö-Widom theorem** by

$$D_N[\phi] \sim G[\phi]^N E[\phi],$$

$$G[\phi] = \exp\left([\log \phi]_0\right) \quad \text{and} \quad E(\phi) = \exp\left(\sum_{n \ge 1} n [\log \phi]_n [\log \phi]_{-n}\right).$$

Biorthogonal polynomials on the unit circle

Let Q_n and \widehat{Q}_n be respectively defined by

$$Q_n(z) := \frac{1}{\sqrt{D_n[\phi]D_{n+1}[\phi]}} \det \begin{pmatrix} \phi_0 & \phi_{-1} & \cdots & \phi_{-n} \\ \phi_1 & \phi_0 & \cdots & \phi_{-n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{n-1} & \phi_{n-2} & \cdots & \phi_{-1} \\ 1 & z & \cdots & z^n \end{pmatrix},$$

and

$$\begin{split} \widehat{Q}_{n}(z) &:= \frac{1}{\sqrt{D_{n}[\phi]}D_{n+1}[\phi]} \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n+1} & 1\\ \phi_{1} & \phi_{0} & \cdots & \phi_{-n+2} & z\\ \vdots & \vdots & \ddots & \vdots & \\ \phi_{n} & \phi_{n-1} & \cdots & \phi_{1} & z^{n} \end{pmatrix}, \\ Q_{n}(z) &= \kappa_{n}z^{n} + \sum_{\ell=0}^{n-1}\kappa_{\ell}^{(n)}z^{\ell}, \quad \text{and} \quad \widehat{Q}_{n}(z) &= \kappa_{n}z^{n} + \sum_{\ell=0}^{n-1}\widehat{\kappa}_{\ell}^{(n)}z^{\ell}, \end{split}$$

where

$$\kappa_n = \sqrt{\frac{D_n[\phi]}{D_{n+1}[\phi]}}.$$

Biorthogonal polynomials on the unit circle

Let Q_n and \widehat{Q}_n be respectively defined by

$$Q_{n}(z) := \frac{1}{\sqrt{D_{n}[\phi]D_{n+1}[\phi]}} \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n} \\ \phi_{1} & \phi_{0} & \cdots & \phi_{-n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{n-1} & \phi_{n-2} & \cdots & \phi_{-1} \\ 1 & z & \cdots & z^{n} \end{pmatrix},$$

and

$$\widehat{Q}_{n}(z) := \frac{1}{\sqrt{D_{n}[\phi]D_{n+1}[\phi]}} \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n+1} & 1\\ \phi_{1} & \phi_{0} & \cdots & \phi_{-n+2} & z\\ \vdots & \vdots & \ddots & \vdots\\ \phi_{n} & \phi_{n-1} & \cdots & \phi_{1} & z^{n} \end{pmatrix},$$

One can readily observe that $\{Q_n\}_{n=0}^{\infty}$ and $\{\widehat{Q}_n\}_{n=0}^{\infty}$ form the **bi-orthogonal system of polynomials** on the unit circle with respect to the weight ϕ :

$$\int_{\mathbb{T}} Q_n(z) \widehat{Q}_n(z^{-1}) \phi(z) \frac{\mathrm{d}z}{2\pi \mathrm{i}z} = \delta_{nk}, \qquad n, k = 0, 1, 2, \cdots.$$

RHP for BOPUC

It is due to J.Baik, P.Deift and K.Johansson that the following matrix-valued function constructed out of the polynomials Q_n and \widehat{Q}_n

$$X(z;n) := \begin{pmatrix} \kappa_n^{-1} Q_n(z) & \kappa_n^{-1} \int_{\mathbb{T}} \frac{Q_n(\zeta)}{(\zeta-z)} \frac{\phi(\zeta) d\zeta}{2\pi i \zeta^n} \\ -\kappa_{n-1} z^{n-1} \widehat{Q}_{n-1}(z^{-1}) & -\kappa_{n-1} \int_{\mathbb{T}} \frac{\widehat{Q}_{n-1}(\zeta^{-1})}{(\zeta-z)} \frac{\phi(\zeta) d\zeta}{2\pi i \zeta} \end{pmatrix}$$

satisfies the following **Riemann-Hilbert problem** for the BOPUC, which in the subsequent parts of this text will occasionally be referred to as the *X*-RHP:

- **RH-X1** $X : \mathbb{C} \setminus \mathbb{T} \to \mathbb{C}^{2 \times 2}$ is analytic,
- ▶ **RH-X2** The limits of $X(\zeta)$ as ζ tends to $z \in \mathbb{T}$ from the inside and outside of the unit circle exist, and are denoted $X_{\pm}(z)$ respectively and are related by

$$X_{+}(z) = X_{-}(z) \begin{pmatrix} 1 & z^{-n}\phi(z) \\ 0 & 1 \end{pmatrix}, \qquad z \in \mathbb{T},$$

▶ **RH-X3** As $z \to \infty$

$$X(z) = \left(I + \mathcal{O}(z^{-1})\right) \begin{pmatrix} z^n & 0\\ 0 & z^{-n} \end{pmatrix}.$$

Let us first recall the two-dimensional **Ising model**, solved by Onsager. In this model a $2\mathcal{M} \times 2\mathcal{N}$ rectangular lattice is considered with an associated spin variable σ_{jk} taking the values 1 and -1 at each vertex $(j, k), -\mathcal{M} \leq j \leq \mathcal{M} - 1, -\mathcal{N} \leq k \leq \mathcal{N} - 1$. There are $2^{4\mathcal{M}\mathcal{N}}$ possible spin configurations $\{\sigma\}$ of the lattice (a configuration corresponds to values of all σ_{jk} fixed). By \mathcal{J}_h and \mathcal{J}_v we respectively denote the horizontal and vertical nearest neighbor coupling constants and with each configuration we associate its **nearest-neighbor coupling energy** given by

$$E(\{\sigma\}) = -\sum_{j=-\mathcal{M}}^{\mathcal{M}-1} \sum_{k=-\mathcal{N}}^{\mathcal{N}-1} \left(\mathcal{J}_h \sigma_{j,k} \sigma_{j,k+1} + \mathcal{J}_\nu \sigma_{j,k} \sigma_{j+1,k} \right), \qquad \mathcal{J}_h, \mathcal{J}_\nu > 0.$$

The probability of a spin configuration $\{\sigma\}$ is given by

$$P_{\{\sigma\}} = \frac{1}{Z(T)} \exp\left(-\frac{E\left(\{\sigma\}\right)}{k_B T}\right),$$

where k_B is the Boltzmann's constant and Z(T) denotes the partition function and is naturally defined as

$$Z(T) = \sum_{\{\sigma\}} \exp\left(-\frac{E\left(\{\sigma\}\right)}{k_B T}\right).$$

The two-dimensional Ising model

The spin-spin correlation function between the vertices (m', n') and (m, n) is defined as the following *thermodynamic limit*

$$\langle \sigma_{m',n'} \sigma_{m,n} \rangle = \lim_{\mathcal{M}, \mathcal{N} \to \infty} \frac{1}{Z(T)} \sum_{\{\sigma\}} \sigma_{m',n'} \sigma_{m,n} \exp\left(-\frac{E\left(\{\sigma\}\right)}{k_B T}\right).$$

The quantity $\lim_{m^2+n^2\to\infty} \langle \sigma_{0,0}\sigma_{m,n} \rangle$ is referred to as the **long-range order** in the lattice at a temperature *T*. Indeed, the spontaneous magnetization *M* is defined as square of the large-*n* limit of *diagonal* correlations

$$M := \sqrt{\lim_{n \to \infty} \langle \sigma_{0,0} \sigma_{n,n} \rangle}.$$

Let us introduce the notations,

$$\begin{split} S_h &= \sinh\left(\frac{2\mathcal{I}_h}{k_BT}\right), \quad S_\nu &= \sinh\left(\frac{2\mathcal{I}_\nu}{k_BT}\right) \;, \\ C_h &= \cosh\left(\frac{2\mathcal{I}_h}{k_BT}\right), \quad C_\nu &= \cosh\left(\frac{2\mathcal{I}_\nu}{k_BT}\right) \;, \end{split}$$

and

$$k = S_h S_v$$

The two-dimensional Ising model

It is famously known that, unlike the one-dimensional case, the two-dimensional Ising model exhibits a phase transition in the spontaneous magnetization at some temperature T_c , characterized by

$$k = 1.$$

In this talk I will focus on

k > 1,

which corresponds to the low temperature regime $T < T_c$.

For the diagonal correlations $\langle \sigma_{0,0} \sigma_{N,N} \rangle$ and the horizontal correlations $\langle \sigma_{0,0} \sigma_{0,N} \rangle$, one has Toeplitz determinant representations. Indeed, for the diagonal correlations we have

$$\langle \sigma_{0,0}\sigma_{N,N}\rangle = D_N[\widehat{\phi}], \qquad \widehat{\phi}(z) = \sqrt{\frac{1-k^{-1}z^{-1}}{1-k^{-1}z}},$$

and for the horizontal correlations

$$\langle \sigma_{0,0}\sigma_{0,N} \rangle = D_N[\hat{\eta}], \qquad \hat{\eta}(z) = \sqrt{\frac{(1-\alpha_1 z)(1-\alpha_2 z^{-1})}{(1-\alpha_1 z^{-1})(1-\alpha_2 z)}},$$

where α_1 and α_2 are given by

$$\alpha_1 = \frac{z_h(1-z_v)}{1+z_v}, \quad \alpha_2 = \frac{1-z_v}{z_h(1+z_v)}, \quad z_{h,v} = \tanh \frac{\mathcal{J}_{h,v}}{k_B T}$$

The two-dimensional Ising model

In the low temperature regime, the symbols $\hat{\phi}$ and $\hat{\eta}$ enjoy the regularity properties required by the strong Szegő limit theorem and the diagonal and horizontal long-range orders

$$M_D := \sqrt{\lim_{N \to \infty} \langle \sigma_{0,0} \sigma_{N,N} \rangle}$$
 and $M_H := \sqrt{\lim_{N \to \infty} \langle \sigma_{0,0} \sigma_{0,N} \rangle}$

both evaluate to

$$(1-k^{-2})^{1/8}$$
.

In an interesting development, It was shown by Au-Yang and Perk in 1987 that the **next-to-diagonal** two point correlation function is given by the following bordered Toeplitz determinant,

$$\langle \sigma_{0,0}\sigma_{N-1,N}\rangle = D_N^B[\widehat{\phi},\widehat{\psi}],$$

where $\widehat{\phi}$ is the symbol for diagonal correlations, and

$$\widehat{\psi}(z) = rac{C_{\nu} z \widehat{\phi}(z) + C_h}{S_{\nu}(z - c_*)}, \quad \text{with} \quad c_* = -rac{S_h}{S_{\nu}}.$$

In an interesting development, It was shown by Au-Yang and Perk in 1987 that the **next-todiagonal** two point correlation function is given by the following bordered Toeplitz determinant,

$$\langle \sigma_{0,0}\sigma_{N-1,N}\rangle = D_N^B[\widehat{\phi},\widehat{\psi}]$$

where $\widehat{\phi}$ is the symbol for diagonal correlations, and

$$\widehat{\psi}(z) = \frac{C_v z \widehat{\phi}(z) + C_h}{S_v (z - c_*)}, \quad \text{with} \quad c_* = -\frac{S_h}{S_v}$$

The **bordered Toeplitz determinant**, $D_N^B[\phi; \psi]$, is defined as

$$D_{N}^{B}[\phi;\psi] := \det \begin{pmatrix} \phi_{0} & \phi_{1} & \cdots & \phi_{N-2} & \psi_{N-1} \\ \phi_{-1} & \phi_{0} & \cdots & \phi_{N-3} & \psi_{N-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{2-N} & \phi_{3-N} & \cdots & \phi_{0} & \psi_{1} \\ \phi_{1-N} & \phi_{2-N} & \cdots & \phi_{-1} & \psi_{0} \end{pmatrix}, \quad N > 1.$$

A general result

Theorem 1. Let $D_N^B[\phi; \psi]$ be the bordered Toeplitz determinant with $\psi = q_1 \phi + q_2$, where

$$q_1(z) = a_0 + a_1 z + \frac{b_0}{z} + \sum_{j=1}^m \frac{b_j z}{z - c_j}, \quad \text{and} \quad q_2(z) = \hat{a}_0 + \hat{a}_1 z + \frac{\hat{b}_0}{z} + \sum_{j=1}^m \frac{\hat{b}_j}{z - c_j},$$

and ϕ of Szegő type. Then, as $N \to \infty$

$$D_N^B[\phi,\psi] = G[\phi]^N E[\phi] \left(F[\phi;\psi] + \mathcal{O}(\rho^{-N}) \right),$$

where

$$\begin{split} G[\phi] &= \exp\left([\log \phi]_{0}\right) \quad \text{and} \quad E(\phi) = \exp\left(\sum_{n \ge 1} n[\log \phi]_{n}[\log \phi]_{-n}\right), \\ F[\phi;\psi] &= a_{0} + b_{0}[\log \phi]_{1} + \sum_{\substack{j=1\\0 < |c_{j}| < 1}}^{m} b_{j} \frac{\alpha(c_{j})}{\alpha(0)} + \frac{1}{\alpha(0)} \left(\hat{a}_{0} - \hat{a}_{1}[\log \phi]_{-1} - \sum_{\substack{j=1\\|c_{j}| > 1}}^{m} \frac{\hat{b}_{j}}{c_{j}} \alpha(c_{j})\right), \\ \alpha(z) &:= \exp\left[\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\ln(\phi(\tau))}{\tau - z} d\tau\right], \end{split}$$

Theorem 2. Let $\langle \sigma_{0,0} \sigma_{N-1,N} \rangle$ be the next-to-diagonal two point correlation function in the Ising model. Then, in the low-temperature regime, the long-range order in the next-to-diagonal direction for the anisotropic square lattice Ising model is the same as of the diagonal and horizontal ones, i.e. is described as follows

$$\lim_{N \to \infty} \langle \sigma_{0,0} \sigma_{N-1,N} \rangle = (1 - k^{-2})^{1/4}.$$

Theorem 3. The next-to-diagonal two point correlation function has, in the low-temperature regime k > 1, the $N \rightarrow \infty$ asymptotics

$$\left\langle \sigma_{0,0}\sigma_{N-1,N} \right\rangle = (1-k^{-2})^{1/4} \left(1 + \frac{1}{2\pi(1-k^{-2})} \left(\frac{1}{C_{\nu}^2} + \frac{1}{k^2-1} \right) N^{-2} k^{-2N} \left(1 + O(N^{-1}) \right) \right)$$

For comparison, asymptotics of the diagonal correlation function is given by

$$\left<\sigma_{0,0}\sigma_{N,N}\right> = (1-k^{-2})^{1/4}\left(1+\frac{1}{2\pi(1-k^{-2})^2k^2}N^{-2}k^{-2N}\left(1+O(N^{-1})\right)\right),$$

as $N \to \infty$.

Theorem 4. Suppose that $\psi(z)$ admits an analytic continuation in some neighborhood of the unit circle and let ϕ be of Szegő type. Then

$$D_N^B\left[\phi,\psi\right] = G[\phi]^N E[\phi] \left(F[\phi;\psi] + \mathcal{O}(e^{-\mathfrak{c}N})\right),$$

where

$$G[\phi] = \exp\left([\log \phi]_0\right) \quad \text{and} \quad E(\phi) = \exp\left(\sum_{n \ge 1} n[\log \phi]_n[\log \phi]_{-n}\right),$$

and $F[\phi; \psi]$ is given by

$$F[\phi;\psi] = \frac{[\alpha_{-}\psi]_{0}}{\alpha(0)} \equiv \frac{1}{\alpha(0)} \int_{\mathbb{T}} \alpha_{-}(w)\psi(w) \frac{\mathrm{d}w}{2\pi \mathrm{i}w},$$

and \mathfrak{c} is some positive constant.

The bordered Toeplitz determinants $D_{n+1}^{B}[\phi, \frac{1}{z-c}]$, and $D_{n+1}^{B}[\phi, \frac{\phi}{z-c}]$ are encoded into *X*-RHP data described by

$$D_{n+1}^{B}[\phi, \frac{1}{z-c}] = \begin{cases} 0, & |c| < 1, \\ -c^{-n-1}D_{n}[\phi]X_{11}(c;n), & |c| > 1, \end{cases}$$

and

$$\begin{split} D_{n+1}^{B}[\phi, \frac{\phi}{z-c}] &= -\frac{1}{c} D_{n+1}[\phi] + \frac{1}{c} D_{n}[\phi] X_{12}(c,n), \qquad c \neq 0, \\ D_{n+1}^{B}[\phi; z^{-\ell}\phi] &= \frac{D_{n}[\phi]}{\ell!} \frac{d^{\ell}}{dz^{\ell}} X_{12}(z;n) \bigg|_{z=0}, \\ D_{n+1}^{B}[\phi, z] &= D_{n}[\phi] \lim_{z \to \infty} \left(\frac{X_{11}(z;n) - z^{n}}{z^{n-1}} \right) \equiv D_{n}[\phi] \frac{\kappa_{n-1}^{(n)}}{\kappa_{n}}, \\ D_{n+1}^{B}[\phi, z^{2}] &= D_{n}[\phi] \lim_{z \to \infty} \left(\frac{X_{11}(z;n) - z^{n} - \frac{\kappa_{n-1}^{(n)}}{\kappa_{n}} z^{n-1}}{z^{n-2}} \right) \equiv D_{n}[\phi] \frac{\kappa_{n-2}^{(n)}}{\kappa_{n}}, \end{split}$$

and so on. Note that

$$D_{n+1}^B[\phi, z^k] = 0, \qquad k \in \mathbb{Z} \setminus \{0, 1, \cdots n\}.$$

$$D_n^B[\phi; \boldsymbol{\psi}_m] := \det \begin{pmatrix} \phi_0 & \phi_1 & \cdots & \phi_{n-m-1} & \psi_{1,n-1} & \psi_{2,n-1} & \cdots & \psi_{m,n-1} \\ \phi_{-1} & \phi_0 & \cdots & \phi_{n-m-2} & \psi_{1,n-2} & \psi_{2,n-2} & \cdots & \psi_{m,n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{-n+1} & \phi_{-n+2} & \cdots & \phi_{-m} & \psi_{1,0} & \psi_{2,0} & \cdots & \psi_{m,0} \end{pmatrix},$$

For example, here you see the determinant $\mathscr{F}_n^{(3)} \left[\phi; \xi_3, \psi_3, \eta_3, \gamma_3; a_{12}\right]$ with colored entries for easier interpretation:

	(a9	$\xi_{3,n-3}$	$\xi_{3,n-4}$	$\xi_{3,n-5}$	$\xi_{3,n-6}$	• • •	ξ3,2	ξ3,1	ξ3,0	<i>a</i> ₁₀
det	$\gamma_{3,n-3}$	a_5	$\xi_{2,n-5}$	$\xi_{2,n-6}$	$\xi_{2,n-7}$	• • •	$\xi_{2,1}$	ξ2,0	a_6	$\psi_{3,0}$
	$\gamma_{3,n-4}$	$\gamma_{2,n-5}$	a_1	$\xi_{1,n-7}$	$\xi_{1,n-8}$	• • •	$\xi_{1,0}$	a_2	$\psi_{2,0}$	$\psi_{3,1}$
	$\gamma_{3,n-5}$	$\gamma_{2,n-6}$	$\gamma_{1,n-7}$	ϕ_0	ϕ_{-1}	• • •	ϕ_{-n+7}	$\psi_{1,0}$	$\psi_{2,1}$	$\psi_{3,2}$
	¥ 3, <i>n</i> −6	$\gamma_{2,n-7}$	$\gamma_{1,n-8}$	ϕ_1	ϕ_0	• • •	ϕ_{-n+8}	$\psi_{1,1}$	$\psi_{2,2}$	$\psi_{3,3}$
	÷	÷	÷	÷	÷	·	÷	÷	÷	:
	Y 3,2	Y 2,1	Y 1,0	ϕ_{n-7}	ϕ_{n-8}	• • •	ϕ_0	$\psi_{1,n-7}$	$\psi_{2,n-6}$	$\psi_{3,n-5}$
	Y 3,1	Y 2,0	a_4	$\eta_{1,n-7}$	$\eta_{1,n-8}$	• • •	$\eta_{1,0}$	a_3	$\psi_{2,n-5}$	$\psi_{3,n-4}$
	Y 3,0	a_8	$\eta_{2,n-5}$	$\eta_{2,n-6}$	$\eta_{2,n-7}$	• • •	$\eta_{2,1}$	$\eta_{2,0}$	a_7	$\psi_{3,n-3}$
	a_{12}	$\eta_{3,n-3}$	$\eta_{3,n-4}$	$\eta_{3,n-5}$	$\eta_{3,n-6}$	• • •	$\eta_{3,2}$	$\eta_{3,1}$	$\eta_{3,0}$	a_{11})

Theorem

For $\ell = 1, 2$, let $\psi_{\ell}(z) = q_1^{(\ell)}(z)\phi(z) + q_2^{(\ell)}(z)$ where

$$q_1^{(\ell)}(z) = a_0^{(\ell)} + a_1^{(\ell)} z + \frac{b_0^{(\ell)}}{z} + \sum_{j=1}^{m_\ell} \frac{b_j^{(\ell)} z}{z - c_j^{(\ell)}}, \quad and \quad q_2^{(\ell)}(z) = \hat{a}_0^{(\ell)} + \hat{a}_1^{(\ell)} z + \frac{\hat{b}_0^{(\ell)}}{z} + \sum_{j=1}^m \frac{\hat{b}_j^{(\ell)}}{z - c_j^{(\ell)}},$$

and suppose that ϕ is of Szegő-type. Then,

$$\begin{split} D_n^B[\phi; \psi_2] &\equiv D_n^B[\phi; \psi_1, \psi_2] = G^n[\phi] E[\phi] \left\{ \mathcal{I}_1[\phi, \psi_1, \psi_2] + O(\rho^{-n}) \right\}, \\ \mathcal{I}_1[\phi, \psi_1, \psi_2] &= \begin{vmatrix} F[\phi, \psi_2] & F[\phi, \psi_1] \\ H[\phi, \psi_2] & H[\phi, \psi_1] \end{vmatrix}, \end{split}$$

in which $F[\phi, \psi]$ is given by (9), and

$$\begin{split} H[\phi;\psi] &= a_1 - \sum_{j=1}^m \frac{b_j}{c_j} + a_0 [\log \phi]_1 + b_0 [\log \phi]_2 + \frac{b_0}{2} [\log \phi]_1^2 \\ &+ \frac{1}{G[\phi]} \left(\hat{a}_1 - \sum_{\substack{j=1\\|c_j| > 1}}^m \frac{\hat{b}_j}{c_j^2} \alpha(c_j) + \sum_{\substack{j=1\\0 < |c_j| < 1}}^m \frac{b_j}{c_j} \alpha(c_j) \right) . \end{split}$$

Let

$$D_n^B[\phi; \boldsymbol{\psi}_2] \equiv \mathcal{D},$$

where

$$D_n^B[\phi; \psi_2] = \det \begin{pmatrix} \phi_0 & \phi_1 & \cdots & \phi_{n-3} & \psi_{1,n-1} & \psi_{2,n-1} \\ \phi_{-1} & \phi_0 & \cdots & \phi_{n-4} & \psi_{1,n-2} & \psi_{2,n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{-n+3} & \phi_{-n+4} & \cdots & \phi_0 & \psi_{1,2} & \psi_{2,2} \\ \phi_{-n+2} & \phi_{-n+3} & \cdots & \phi_{-1} & \psi_{1,1} & \psi_{2,1} \\ \phi_{-n+1} & \phi_{-n+2} & \cdots & \phi_{-2} & \psi_{1,0} & \psi_{2,0} \end{pmatrix}$$

Consider the following Dodgson condensation identity:

$$\mathcal{D} \cdot \mathcal{D} \begin{pmatrix} 0 & n-1 \\ n-2 & n-1 \end{pmatrix} = \mathcal{D} \begin{pmatrix} 0 \\ n-2 \end{pmatrix} \cdot \mathcal{D} \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} - \mathcal{D} \begin{pmatrix} 0 \\ n-1 \end{pmatrix} \cdot \mathcal{D} \begin{pmatrix} n-1 \\ n-2 \end{pmatrix}.$$

Riemann-Hilbert problem with nonzero winding number symbol

Let us recall

- ▶ **RH-X1** $X(\cdot; n) : \mathbb{C} \setminus \mathbb{T} \to \mathbb{C}^{2 \times 2}$ is analytic,
- ▶ **RH-X2** The limits of $X(\zeta; n)$ as ζ tends to $z \in \mathbb{T}$ from the inside and outside of the unit circle exist, and are denoted $X_{\pm}(z; n)$ respectively and are related by

$$X_+(z;n) = X_-(z;n) \begin{pmatrix} 1 & z^{-n}\phi(z) \\ 0 & 1 \end{pmatrix}, \qquad z \in \mathbb{T},$$

▶ **RH-X3** As $z \to \infty$

$$X(z;n) = \left(I + \frac{\overset{\infty}{X}_{1}(n)}{z} + \frac{\overset{\infty}{X}_{2}(n)}{z^{2}} + O(z^{-3})\right) z^{n\sigma_{3}}.$$

By Z(z; n) we refer to the solution of the *X*-RHP when ϕ is replaced by $z\phi$:

- ▶ **RH-Z1** $Z(\cdot; n) : \mathbb{C} \setminus \mathbb{T} \to \mathbb{C}^{2 \times 2}$ is analytic,
- ▶ **RH-Z2** The limits of $Z(\zeta; n)$ as ζ tends to $z \in \mathbb{T}$ from the inside and outside of the unit circle exist, and are denoted $Z_{\pm}(z; n)$ respectively and are related by

$$Z_+(z;n) = Z_-(z;n) \begin{pmatrix} 1 & z^{-n} z \phi(z) \\ 0 & 1 \end{pmatrix}, \qquad z \in \mathbb{T},$$

• RH-Z3 As $z \to \infty$

 $Z(z;n) = \left(I + O(z^{-1})\right) z^{n\sigma_3}.$

Theorem

The solution Z(z; n) to the Riemann-Hilbert problem **RH-Z1** through **RH-Z3** can be expressed in terms of the data extracted from the solution X(z; n) of the Riemann-Hilbert problem **RH-X1** through **RH-X3** as

$$Z(z;n) = \begin{bmatrix} \begin{pmatrix} \overset{\infty}{X}_{1,12}(n)X_{21}(0;n) & & & \\ & X_{11}(0;n) & & & \\ & & -X_{1,12}(n) \\ & & & \\ & & -\frac{X_{21}(0;n)}{X_{11}(0;n)} & & 1 \end{bmatrix} z^{-1} + \begin{pmatrix} 1 & & 0 \\ 0 & & 0 \end{pmatrix} \end{bmatrix} X(z;n) \begin{pmatrix} 1 & & 0 \\ 0 & & z \end{pmatrix},$$

or

$$Z(z;n) = \begin{pmatrix} z + \overset{\infty}{X}_{1,22}(n-1) - \overset{\widetilde{X}_{2,12}(n-1)}{X}_{1,12}(n-1) & -\overset{\infty}{X}_{1,12}(n-1) \\ \frac{1}{\overset{\infty}{X}_{1,12}(n-1)} & 0 \end{pmatrix} X(z;n-1).$$

$\mathscr{L}_{n}[\phi;\psi,\eta;a] := \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n+2} & \psi_{0} \\ \phi_{1} & \phi_{0} & \cdots & \phi_{-n+3} & \psi_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{n-2} & \phi_{n-3} & \cdots & \phi_{0} & \psi_{n-2} \\ \eta_{0} & \eta_{1} & \cdots & \eta_{n-2} & a \end{pmatrix},$ $\mathscr{H}_{n}[\phi;\psi,\eta;a] := \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n+3} & \psi_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{n-2} & \phi_{n-3} & \cdots & \phi_{0} & \psi_{n-2} \\ \eta_{n-2} & \eta_{n-3} & \cdots & \eta_{0} & a \end{pmatrix},$ $\mathscr{L}_{n}[\phi;\psi,\eta;a] := \det \begin{pmatrix} \phi_{0} & \phi_{-1} & \cdots & \phi_{-n+2} & \psi_{0} \\ \phi_{1} & \phi_{0} & \cdots & \phi_{-n+3} & \psi_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{n-2} & \phi_{n-3} & \cdots & \phi_{0} & \psi_{n-2} \\ \eta_{n-2} & \eta_{n-3} & \cdots & \phi_{0} & \psi_{n-3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{n-2} & \phi_{n-3} & \cdots & \phi_{0} & \psi_{0} \\ \eta_{0} & \eta_{1} & \cdots & \eta_{n-2} & a \end{pmatrix}.$ η_{n-2} а

semi-framed Toeplitz determinants

bordered Toeplitz bordered Toeplitz

Theorem

The reproducing kernel $K_n(z_1, z_2) := \sum_{j=0}^n Q_j(z_2) \widehat{Q}_j(z_1)$ has the following semi-framed Toeplitz determinant representation

$$K_n(z_1, z_2) = a - \frac{1}{D_{n+1}[\phi]} \det \begin{pmatrix} \phi_0 & \phi_{-1} & \cdots & \phi_{-n} & 1\\ \phi_1 & \phi_0 & \cdots & \phi_{1-n} & z_1\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ \phi_n & \phi_{n-1} & \cdots & \phi_0 & z_1^n\\ 1 & z_2 & \cdots & z_2^n & a \end{pmatrix}.$$

Theorem

The semi-framed Toeplitz determinants $\mathscr{E}_n[\phi;\psi,\eta;a]$, $\mathscr{E}_n[\phi;\psi,\eta;a]$, $\mathscr{H}_n[\phi;\psi,\eta;a]$ and $\mathscr{L}_n[\phi;\psi,\eta;a]$ can be represented in terms of the reproducing kernel of the system of bi-orthogonal polynomials on the unit circle associated with ϕ given by

$$K_n(z_1, z_2) := \sum_{j=0}^n Q_j(z_2) \widehat{Q}_j(z_1),$$

of the system of bi-orthogonal polynomials on the unit circle associated with the symbol ϕ , as

$$\begin{split} &\frac{\mathscr{E}_{n+2}\left[\phi;\psi,\eta;a\right]}{D_{n+1}\left[\phi\right]} = a - \int_{\mathbb{T}} \left[\int_{\mathbb{T}} K_n(z_1,z_2) z_2^{-n} \eta(z_2) \frac{dz_2}{2\pi i z_2} \right] z_1^{-n} \psi(z_1) \frac{dz_1}{2\pi i z_1}, \\ &\frac{\mathscr{E}_{n+2}\left[\phi;\psi,\eta;a\right]}{D_{n+1}\left[\phi\right]} = a - \int_{\mathbb{T}} \left[\int_{\mathbb{T}} K_n(z_1^{-1},z_2^{-1}) \eta(z_2) \frac{dz_2}{2\pi i z_2} \right] \psi(z_1) \frac{dz_1}{2\pi i z_1}, \\ &\frac{\mathscr{E}_{n+2}\left[\phi;\psi,\eta;a\right]}{D_{n+1}\left[\phi\right]} = a - \int_{\mathbb{T}} \left[\int_{\mathbb{T}} K_n(z_1^{-1},z_2) z_2^{-n} \eta(z_2) \frac{dz_2}{2\pi i z_2} \right] \psi(z_1) \frac{dz_1}{2\pi i z_1}, \\ &\frac{\mathscr{E}_{n+2}\left[\phi;\psi,\eta;a\right]}{D_{n+1}\left[\phi\right]} = a - \int_{\mathbb{T}} \left[\int_{\mathbb{T}} K_n(z_1,z_2^{-1}) \eta(z_2) \frac{dz_2}{2\pi i z_2} \right] z_1^{-n} \psi(z_1) \frac{dz_1}{2\pi i z_1}, \end{split}$$

where $D_n[\phi]$ is given by (2).

21

Corollary

The semi-framed Toeplitz determinants \mathscr{H}_{n+2} [$\phi;\psi,\eta;a$], \mathscr{E}_{n+2} [$\phi;\psi,\eta;a$], \mathscr{G}_{n+2} [$\phi;\psi,\eta;a$], \mathscr{G}_{n+2} [$\phi;\psi,\eta;a$], and \mathscr{L}_{n+2} [$\phi;\psi,\eta;a$] are encoded into the X-RHP data as

$$\begin{aligned} &\frac{\mathscr{H}_{n+2}\left[\phi;\psi,\eta;a\right]}{D_{n+1}\left[\phi\right]} = a - \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{z_{1}^{-n} z_{2}^{-n} \eta(z_{2})\psi(z_{1})}{z_{1}-z_{2}} \det \begin{pmatrix} X_{11}(z_{2};n+1) & X_{21}(z_{2};n+2) \\ X_{11}(z_{1};n+1) & X_{21}(z_{1};n+2) \end{pmatrix} \frac{dz_{2}}{2\pi i z_{2}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi i z_{2}} \frac{dz_{1}}{2\pi i z_{2}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi i z_{2}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi i z_{2}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi i z_{1}} \frac{dz_{1}}{2\pi$$

where $D_n[\phi]$ is given by (2), and X_{11} and X_{21} are respectively the 11 and 21 entries of the solution to **RH-X1** through **RH-X3**.

Theorem

 \mathscr{C}_{n+1}

 \mathcal{G}_{n+1}

Let ϕ be a Szegő-type symbol, and c and d be complex numbers that do not lie on the unit circle. Then, the following Strong Szegő asymptotics hold for $\mathcal{H}, \mathcal{L}, \mathcal{E}$ and \mathcal{G} :

$$\begin{aligned} \mathscr{H}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j \phi}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k \phi}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + O(\rho^{-n})\right). \\ \mathscr{L}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j \tilde{\phi}}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k \tilde{\phi}}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + O(\rho^{-n})\right). \\ \left[\phi; \sum_{j=1}^{m_1} \frac{A_j \tilde{\phi}}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k \phi}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + \sum_{j=1}^{m_1} \sum_{k=1 \atop |d_j| < 1}^{m_2} A_j B_k \frac{\alpha(c_k)}{\alpha(d_j^{-1})} \cdot \frac{1}{1 - c_k d_j} + O(\rho^{-n})\right). \\ \left[\phi; \sum_{j=1}^{m_1} \frac{A_j \phi}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k \tilde{\phi}}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + \sum_{j=1 \atop |d_j| < 1}^{m_1} \sum_{k=1 \atop |c_k| < 1}^{m_2} A_j B_k \frac{\alpha(d_j)}{\alpha(c_k^{-1})} \cdot \frac{1}{1 - c_k d_j} + O(\rho^{-n})\right). \end{aligned}$$

Theorem

 \mathcal{G}_{n+1}

Let ϕ be of Szegő-type, and c and d be complex numbers that do not lie on the unit circle. Then, the following Strong Szegő asymptotics hold for $\mathcal{H}, \mathcal{L}, \mathcal{E}$ and \mathcal{G} :

$$\begin{aligned} \mathscr{H}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + O(\rho^{-n})\right) . \\ \mathscr{H}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + O(\rho^{-n})\right) . \\ \mathscr{E}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + \sum_{j=1}^{m_1} \sum_{k=1}^{m_2} A_j B_k \frac{\alpha(c_k)}{\alpha(d_j^{-1})} \cdot \frac{1}{1 - c_k d_j} + O(\rho^{-n})\right) . \\ \mathscr{E}_{n+1}\left[\phi; \sum_{j=1}^{m_1} \frac{A_j}{z - d_j}, \sum_{k=1}^{m_2} \frac{B_k}{z - c_k}; a\right] &= G^n[\phi] E[\phi] \left(a + \sum_{j=1}^{m_1} \sum_{k=1}^{m_2} A_j B_k \frac{\alpha(d_j)}{\alpha(c_k^{-1})} \cdot \frac{1}{1 - c_k d_j} + O(\rho^{-n})\right) . \end{aligned}$$

Consider *n* simple random walks on \mathbb{Z} which begin at the points $x_1 < x_2 < \cdots < x_n$ and end at the points $y_1 < y_2 < \cdots < y_n$ after a fixed time $T \in 2\mathbb{N}$. If a few of the starting/ending points are not equally spaced, then we get a bordered or framed Toeplitz determinant. For example if $x_j = j$ for $j = 1, \ldots, n$, $y_k = k$ for $j = 1, 2, \ldots, n - m$, and $y_k > n - m$ are arbitrary for $k = n - m + 1, \ldots, n$, we get the bordered Toeplitz determinant

$$\boldsymbol{D}_{n}^{B}[\phi; \boldsymbol{\vec{\psi}}_{m}],$$

where

$$\psi_{\ell}(\zeta) = \phi(\zeta) \zeta^{-(y_{n-\ell+1}-n)}$$

If $x_j = y_j = j$ for $j = 1, 2, \dots, n-1$ and x_n and y_n are both arbitrary then we get the framed Toeplitz matrix

$$\det\begin{pmatrix} \phi_{0} & \phi_{1} & \cdots & \phi_{n-2} & \psi_{n-1} \\ \phi_{-1} & \phi_{0} & \cdots & \phi_{n-3} & \psi_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{2-n} & \phi_{3-n} & \cdots & \phi_{0} & \psi_{1} \\ \eta_{1-n} & \eta_{2-n} & \cdots & \eta_{-1} & \phi_{y_{n}-x_{n}} \end{pmatrix},$$

where

$$\psi(\zeta) = \phi(\zeta)\zeta^{-(y_n - n)}, \quad \eta(\zeta) = \phi(\zeta)\zeta^{x_n - n}$$

Thank you!

$$\det \begin{pmatrix} T_n[\phi] & B_n \\ C_n & a \end{pmatrix} = D_n[\phi] \det \left(a - C_n T_n^{-1}[\phi] B_n \right)$$