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KdV and solitons

The KdV equation

In 1834 the Scottish engineer John Scott-Russell accidentally observed a surface
water wave in the Union Canal between Edinburgh and Glasgow that appeared to
be a spatially localized traveling wave, that he called “great wave of translation”.

In 1895, D. J. Korteweg and G. de Vries proposed the following equation to
describe this phenomenon:

ut − 6uux + uxxx = 0.
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KdV and solitons

The one-soliton solution

The simplest wave solution is:

u(x, t) = ϕv (x− vt) .

With this ansatz, the PDE becomes an ODE in the variable ξ = x− vt

−vϕ′v − 6ϕvϕ
′
v + ϕ′′′v = 0

One solution is a rapidly decreasing, localized travelling wave (soliton):

u(x, t) = −
v

2
sech2

(√
v

2
(x− vt− x0)

)
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KdV and solitons

u(x, t) = −
v

2
sech2

(√
v

2
(x− vt− x0)

)

Remark

In order to have a real solution, we need v > 0, which in turn implies that the
wave-solution can move only to the right.

The amplitude of the wave is proportional to the speed v, thus larger
amplitude solitary waves move with a higher speed than smaller amplitude
waves.

6 / 48



Background and motivations Initial conditions Large time behaviour To be continued...

KdV and solitons

The periodic soliton solution

Starting again from the ansatz:

u(x, t) = ϕv (x− vt)

and imposing a periodicity condition, the solution (periodic travelling wave) can
be written in terms of Jacobi elliptic functions:

u(x, t) = β1−β2−β3−2(β1−β3) dn2
(√

β1 − β3(x− 2(β1 + β2 + β3)t) + x0 |m
)

where dn (z |m ) is the Jacobi elliptic function of modulus m = β2−β3
β1−β3

and

β1 > β2 > β3.
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KdV and solitons

Looking for other solutions...

The Cauchy problem (Gardner-Greene-Kruskal-Miura, ’67) :{
ut − 6uux + uxxx = 0

u(x, 0) = q(x)

for rapidly decaying initial data: q(x)→ 0 as x→ ±∞.

This nonlinear PDE is integrable, arising as the compatibility condition of a Lax
pair of linear differential operators (Lax, ’68):

d

dt
L = [B,L]

with

L = −
d2

dx2
+ u, B = −4

d3

dx3
+ 6u

d

dx
+ 3ux .

Equivalently, the compatibility condition can be presented as the existence of a
simultaneous solution to the pair of equations:

Lφ = Eφ, φt = Bφ

where E ∈ R is the spectral parameter.
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KdV and solitons

Solving the Schrödinger equation

We start from

Lφ = Eφ,

where L := − d2

dx2
+ V (x) is the Schrödinger operator with potential

V (x) = u(x, 0) = q(x) (no dependence on time... yet!).

Using tools from spectral theory, GGKM calculated the scattering data, which
will allow to find the solution φ to the Schrödinger equation:

S =
{
−λ2

1, . . . ,−λ2
n eigenvalues,

c1, . . . , cn norming constant of the eigenfunctions,

r(λ) reflection coefficient of the “scattering” solutions φ±(x)}
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KdV and solitons

Turning on time

If the potential Vt(x) = u(x, t) depends also on a (time) parameter t, one expects

the scattering data S =
{
{−λ2

j}, {cj}, r(λ)
}

to vary with t as well.

If the t dependence of u(x, t) is given in terms of the KdV equation,

ut = −uxxx + 6uux,

then the scattering data S(t) evolve in a very simple and explicit manner (GGMK,
’67):

1 the discrete eigenvalues are constant: E = −λ2
j ;

2 the norming constants have exponential behaviour: cj(t) = cj(0)eAλ
3
j t;

3 same for the reflection coefficient: r(λ; t) = r(λ; 0)eiBλ
3t.
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KdV and solitons

Solve the Cauchy initial-value problem for KdV

Recipe:

u(x, 0) u(x, t)

ut − 6uux + uxxx = 0

S(0)

Direct Scattering:

Lax pair

d
dt
L = [B,L]

S(t)
evolve the scattering data

Inverse Scattering

11 / 48



Background and motivations Initial conditions Large time behaviour To be continued...

KdV and solitons

Solve the Cauchy initial-value problem for KdV

Recipe:

u(x, 0) u(x, t)

ut − 6uux + uxxx = 0

S(0)

Direct Scattering:

Lax pair

d
dt
L = [B,L]

S(t)
evolve the scattering data

Inverse Scattering

Calculate the scattering data: S =
{
{−λ2

j}, {cj}, r(λ)
}

11 / 48



Background and motivations Initial conditions Large time behaviour To be continued...
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Solve the Cauchy initial-value problem for KdV

Recipe:

u(x, 0) u(x, t)

ut − 6uux + uxxx = 0

S(0)

Direct Scattering:

Lax pair

d
dt
L = [B,L]

S(t)
evolve the scattering data

Inverse Scattering

Calculate the time-evolved scattering data S(t), imposing u(x, t) to be a solution
of KdV: ut = 6uux − uxxx.
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KdV and solitons

Solve the Cauchy initial-value problem for KdV

Recipe:

u(x, 0) u(x, t)

ut − 6uux + uxxx = 0

S(0)

Direct Scattering:

Lax pair

d
dt
L = [B,L]

S(t)
evolve the scattering data

Inverse Scattering

Construct the inverse scattering map to obtain the solution u(x, t):

Marchenko integral equation (Gelfand-Levitan-Marchenko, 1950’s)

Riemann–Hilbert problem (Deift-Zhou, ’93; Grunert–Teschl, ’09)
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KdV and solitons

Where is the soliton?

Suppose that u(x, 0) = q(x) is such that the corresponding Schrödinger operator
has only one eigenvalue E = −λ2

1 and no reflection coefficient r(λ) ≡ 0.

The solution u(x, t) is a 1-soliton
solution:

u(x, t) = −
v

2
sech2

(√
v

2
(x− vt− x0)

)
where v = λ2

1.

−6 −4 −2 0 2 4 6

−2

−1.5

−1

−0.5

0

In general,

1 (Multi)-soliton solutions correspond to the (discrete) eigenvalues {−λ2
j} of the

Schrödinger operator L = − d2

dx2
+ u.

2 The reflection coefficient r(λ) corresponds to a radiative part (associated to
the continuous spectrum). Qualitatively, the linear radiation propagates to
the left and the amplitude decays in time at rate t−1.
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KdV and solitons

What’s so special about solitons?

Solitons are solitary wave (localised travelling wave) solution of the KdV
equation.

Solitons corresponds to the (discrete) eigenvalues of the Schrödinger operator
and they arise in the long-time behaviour of the solution.

The interaction between solitons is elastic!

u(x, t)→
N∑
j=1

ϕvj

(
x− vjt+ δ±j

)
as t→ ±∞

They “survive” collisions (Zabusky-Kruskal, ’65), despite lack of
superposition principle.

(courtesy of Peter Miller)
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The soliton gas and the Riemann–Hilbert problem

What is a soliton gas? (Zakharov, ’71)

Recent interest revolves around the computation of statistical quantities
describing the evolution of random configurations of a large number of solitons
(“soliton ensemble”).

Let

fλ(x, t) dλdx =

{
number of solitons with the spectral parameter (λ, λ+ dλ)

located in the spatial interval (x, x+ dx) at time t

}

Definition

A soliton gas is an infinite collection of solitons randomly distributed on R with
non-zero (physical) density

%(x, t) =

∫
I
fλ(x, t) dλ.

The nonlinear wave field
u(x, t)

solving the KdV equation in this setting is called integrable soliton turbulence.
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The soliton gas and the Riemann–Hilbert problem

Figure: The initial condition (a) and the final state (b) of a random KdV soliton gas
simulated with N = 200 solitons. From Dutykh, Pelinovsky, ’14.
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The soliton gas and the Riemann–Hilbert problem

Find the solution of a KdV soliton gas equation

Recipe:

u(x, 0) u(x, t)

ut − 6uux + uxxx = 0

S(0)

Direct Scattering:

Lax pair

d
dt
L = [B,L]

S(t)
evolve the scattering data

Inverse Scattering:

Riemann-Hilbert

problem
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The soliton gas and the Riemann–Hilbert problem

What is a RH problem...

RH problem

Given a set of oriented contours Σ in the complex plane, find a (matrix-valued)
function X such that:

1 X is holomorphic in C \ Σ;

2 jump condition: there exists (finite) the limit of X as λ approaches the
contours X±(λ) such that

X+(λ) = X−(λ)J(λ) λ ∈ Σ;

3 normalization at infinity:

X(λ) = I +O
(

1

λ

)
λ→∞.
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The soliton gas and the Riemann–Hilbert problem

+ −

+

−
+
−

Remark

Explicit solutions are extremely rare!
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The soliton gas and the Riemann–Hilbert problem

Soliton gas as a limit of N solitons

A pure N -soliton solution (r(λ) ≡ 0) is described by

M(λ) ∈ Vec2(C) meromorphic in C\
{
λj , λj

}N
j=1

res
λ=λj

M = lim
λ→λj

M(λ)

[
0 0

cje
2iλjx

N
0

]

res
λ=λj

M = lim
λ→λj

M(λ)

[
0

−cje
−2iλjx

N
0 0

]
M(λ) =

[
1 1

]
+O

(
λ−1

)
λ→∞

with

cj =
i(η2 − η1)

π
r1(λj).

λ1

λ2

. . .

λN

−λ1

−λ2

. . .

−λN

And the solution u can be recovered as

u(x) = 2
d

dx

[
lim
λ→∞

λ

i
(M1(λ)− 1)

]
.
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The soliton gas and the Riemann–Hilbert problem

Then, we take the limit as N ↗ +∞ assuming that the poles/solitons accumulates
within [iη1, iη2] ∪ [−iη2,−iη1] and we obtain the RH problem for a soliton gas.

Theorem (G., Grava, McLaughlin, ’18)

The Riemann-Hilbert problem for a KdV soliton gas can be derived as a (uniform)
limit of a meromorphic Riemann-Hilbert problem for N solitons as N ↗ +∞.

X(λ) ∈ Vec2(C) meromorphic in C\ {iΣ1 ∪ iΣ2}

X+(λ) = X−(λ)



[
1 0

−i r1(λ) e2iλx 1

]
λ ∈ iΣ1[

1 i r1(λ) e−2iλx

0 1

]
λ ∈ iΣ2

X(λ) =
[
1 1

]
+O

(
λ−1

)
λ→∞.

iΣ1

iη1

iη2

iΣ2

−iη1

−iη2
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The soliton gas and the Riemann–Hilbert problem

Finally, the solution u is still given as

u(x) = 2
d

dx

[
lim
λ→∞

λ

i
(X1(λ)− 1)

]
.

Remark

This RH problem is a special case of the soliton gas RH problem proposed by
Dyachenko-Zakharov-Zakharov (’16).
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The RH problem for the potential at initial time

Y+(λ) = Y−(λ)



[
1 0

−i r(λ) e−2λx 1

]
λ ∈ [η1, η2] =: Σ1[

1 i r(λ) e2λx

0 1

]
λ ∈ [−η2,−η1] =: Σ2

Y (λ) =
[
1 1

]
+O

(
1

λ

)
λ→∞.

Σ1

η1 η2

Σ2

−η1−η2

We recover u(x) as

u(x) = 2
d

dx

[
lim
λ→∞

λ (Y1(λ)− 1)

]
.
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Large positive x’s

When x↗ +∞, we have

e−2λx → 0 on Σ1 and e2λx → 0 on Σ2,

leaving us with

Y+(λ;x) = Y−(λ;x)

[
1 0
0 1

]
λ ∈ Σ1 ∪ Σ2

Y (λ;x) =
[
1 1

]
+O

(
1

λ

)
λ→∞

up to exponentially small terms.

Then the solution is clearly

Y =
[
1 1

]
+ {small terms}

and the KdV potential is

u(x) = 2
d

dx

[
lim
λ→∞

λ (Y1 − 1)

]
= 0 + {small terms} for x� 1.
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Large negative x’s: the Deift–Zhou steepest descent method

On the other hand, when x↘ −∞, we have

e∓2λx → +∞ on Σ1/2.

Steepest Descent Method (Deift-Zhou, ’93): the strategy is to perform a
sequence of (invertible) transformations of the original RH problem Y

Y 7→ T 7→ U 7→ . . . 7→ S

in such away that, in the regime x� −1, the final RH problem S can be solved by
an approximating solution Ω (the “model problem”):

S ∼ Ω.
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in such away that, in the regime x� −1, the final RH problem S can be solved by
an approximating solution Ω (the “model problem”):

S ∼ Ω.

[
0 −i
−i 0

]
[
exΩ+∆ 0

0 e−xΩ−∆

]
[
0 i
i 0

]
η1 η2−η1−η2
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The (matrix) model problem

The global parametrix P (∞): P
(∞)
+ (λ) = P

(∞)
− (λ)J∞

[
0 −i
−i 0

]
[
exΩ+∆ 0

0 e−xΩ−∆

]
[
0 i
i 0

]
η1 η2−η1−η2

with P (∞)(λ) =

[
1 0
0 1

]
+O

(
λ−1

)
as λ→∞.

The construction of the solution relies on the ϑ-function associated to the genus-1
Riemann surface X =

{
(λ, η) ∈ C2 | η2 = (λ2 − η2

1)(λ2 − η2
2)
}

.

S−

S+

−η2 −η1 η1 η2

−η2 −η1 η1 η2

A B
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P (∞) is a good approximation of S everywhere on C except at the endpoints
λ = ±η2,±η1, where it exhibits a fourth-root singularity, while S is bounded in a
neighbourhood of those points.

Four local (matrix) parametrices P (±ηj):

BesselBesselBessel Bessel

Call Ω the “alleged” approximant built out of the global parametrix P (∞) and the
four local parametrices P (±ηj).

Question: how well does Ω approximate S?

S(λ) ∼ Ω(λ).

28 / 48
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Small-norm argument

Consider the ratio

R := SΩ−1.

Then,R+(λ) = R−(λ) (I + δV (λ)) on the contours, with δV = O
(
|x|−∗

)
R(λ) =

[
1 1

]
+O

(
1

λ

)
λ→∞.

It follows that

R(λ) =
[
1 1

]
+O

(
|x|−∗

)
,

meaning

S(λ) = R(λ)Ω(λ) =
([

1 1
]

+O
(
|x|−∗

))
Ω(λ)

[
0 −i
−i 0

]
[
exΩ+∆ 0

0 e−xΩ−∆

]
[
0 i
i 0

]
η1 η2−η1−η2
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The solution

Theorem (G., Grava, McLaughlin, ’18)

In the regime x↘ −∞, with xΩ+∆
2πi

6= 2n+1
2

, n ∈ Z, the potential u(x) has the
following asymptotic behaviour

u(x) = η2
2 − η2

1 − 2η2
2 dn2 (η2(x+ φ) +K(m) |m ) +O

(
|x|−1

)
where dn (z |m ) is the Jacobi elliptic function of modulus m = η1/η2, K(m) is
the complete elliptic integrals of second kind of modulus m and φ is given by

φ =

∫ η2

η1

log r(ζ)

R+(ζ)

dζ

πi
∈ R .

u(x) is a periodic wave with

period =
2K(m)

η2
;

amplitude = 2η2
1 ;

average value of u(x) over an oscillation:

< u(x) >= η2
2 − η2

1 − 2η2
2

E(m)

K(m)
.
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Note:
There is an issue for some values of x: for

xΩ + ∆

2πi
=

2n+ 1

2
, n ∈ Z,

we cannot build a matrix model problem, therefore the small norm argument
cannot be used.

Work in progress...
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1 Background and motivations
KdV and solitons
The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x’s

3 Large time behaviour of the potential u(x, t)
The super-critical case
The sub-critical case

4 To be continued...
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Switching on time!

Replace
2λx 7→ 2λx− 8λ3t

in the exponentials (evolution of the reflection coefficient).

Y+(λ) = Y−(λ)



[
1 0

−i r(λ) e−2λx+8λ3t 1

]
λ ∈ Σ1

[
1 i r(λ) e2λx−8λ3t

0 1

]
λ ∈ Σ2

Y (λ) =
[
1 1

]
+O

(
1

λ

)
λ→∞.

Σ1

η1 η2

Σ2

−η1−η2
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Background and motivations Initial conditions Large time behaviour To be continued...

The phase in the jumps

2λx− 8λ3t = −8tλ
(
λ2 −

x

4t

)
shows different sign depending on the value of the quantity

ξ :=
x

4t

There are three main domains:

η2
2 < ξ (trivial case): the phases are exponentially decaying as t↗ +∞,

therefore (by a small norm argument)

u(x, t) = O
(
t−∞

)
.

ξcrit < ξ < η2
2 (super-critical case): u(x, t) is a periodic travelling wave

with slowly varying parameters.

ξ < ξcrit (sub-critical case): u(x, t) is a periodic travelling wave with fixed
parameters.
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The super-critical case

The super-critical case: α-dependency

Proposition

Let ξ < η2
2. There exists

ξcrit ∈ R

such that

for each ξ ∈ [ξcrit, η
2
2 ] there exists a unique α = α(ξ; η1, η2) ∈ [η1, η2] .

Σ1,α

η1 α η2

Σ2,α

−η1−α−η2

We can now proceed with the transformations

Y
g−function−→ T

opening lenses−→ S

and get to the model problem Ω(λ).
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The super-critical case

The (matrix) model problem

The global parametrix P (∞):

[
eΩ̃t+∆̃ 0

0 e−Ω̃t−∆̃

]
α η2−α−η2

[
0 −i
−i 0

][
0 i
i 0

]

the construction of the solution relies on the ϑ3-function associated to the genus-1
Riemann surface Xα =

{
(λ, η) ∈ C2 | η2 = R2

α(λ) = (λ2 − α2)(λ2 − η2
2)
}

.

Plus four local parametrices P (±η2) and P (±α):

AiryAiryBessel Bessel
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The super-critical case

Back to the potential u(x, t)

Theorem (G., Grava, McLaughlin, ’18)

Given ξ = x
4t

, for tΩ̃+∆̃
2πi

6= 2n+1
2

, n ∈ Z, in the region ξcrit < ξ < η2
2 the solution

of the KdV equation in the large time limit is

u(x, t) = η2
2 − α2 − 2η2

2 dn2
(
η2(x− 2(α2 + η2

2)t+ φ̃) +K(mα) |mα
)

+O
(
t−1
)

where dn (z |m ) is the Jacobi elliptic function of modulus mα = α
η2

,

φ̃ =

∫ η2

α

log r(ζ)

Rα+(ζ)

dζ

πi
∈ R

and the parameter α = α(ξ) is determined from the equation

ξ =
η2

2

2

1 +m2
α + 2

m2
α(1−m2

α)

1−m2
α −

E(mα)
K(mα)

 .
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1 Background and motivations
KdV and solitons
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The super-critical case
The sub-critical case

4 To be continued...
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The sub-critical case

The sub-critical case

For ξ < ξcrit we have a phase transition:

ξ = η2
2

Σ1,α = η2

η1 η2

Σ2,α = −η2

−η1−η2

Proposition

The value of α monotonically decreases as ξ decreases for ξ ∈ [ξcrit, η
2
2 ].
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The sub-critical case

The sub-critical case

For ξ < ξcrit we have a phase transition:

ξ < ξcrit

Σ1

η1 η2

Σ2

−η1−η2

Recipe:

Similar construction of the model problem, without the α dependency.

The local parametrices at the endpoints are four Bessel parametrices.
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The sub-critical case

Theorem (G., Grava, McLaughlin, ’18)

In the regime t↗ +∞, ξ ≤ ξcrit, tΩ̃+∆̃
2πi

6= 2n+1
2

, n ∈ Z, the potential u(x, t) has
the following asymptotic expansion

u(x, t) = η2
2 − η2

1 − 2η2
2 dn2

(
η2(x− 2(η2

1 + η2
2)t+ φ) +K(m) |m

)
+O

(
t−1
)
,

where m = η1/η2, and

φ =

∫ η2

η1

log r(ζ)

R+(ζ)

dζ

πi
.
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The sub-critical case

Conclusion: complete description of a (free) soliton gas potential in the large
time regime over the whole real line x ∈ R.

Figure: The asymptotic behaviour of the soliton gas solution. Here t = 10, η1 = 0.5 and
η2 = 1.5 and r(λ) ≡ 1.
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Work in progress and future developments

Reflection coefficients:

1. RH problem with two reflection coefficients r1 and r2 (Dyachenko, Zakharov,
Zakharov, ’16):

Y+(λ) = Y−(λ)



1

1 + r1r2

[
1− r1r2 −i r2 e2λx

−i r1 e−2λx 1− r1r2

]
on Σ1

1

1 + r1r2

[
1− r1r2 i r1 e2λx

i r2 e−2λx 1− r1r2

]
on Σ2

2. Multi-band reflection coefficients: the spectral parameter accumulates in two or
more disconnected components {Σ1,j ∪ Σ2,j}j=1,...,M

Σ1,1

η1 η2

Σ2,1

−η1−η2
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on Σ2

2. Multi-band reflection coefficients: the spectral parameter accumulates in two or
more disconnected components {Σ1,j ∪ Σ2,j}j=1,...,M

Σ1,1

η1 η2

Σ1,2

η3 η4

. . .Σ2,1

−η1−η2

Σ2,2

−η3−η4

. . .
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Double scaling limit around the critical values of ξ:

1. What happens in a microscopic neighbourhood of η2
2?

trivial solution Y −→ introduction of a g-function
vanishing of the potential u(x, t) −→ boundedness of the potential u(x, t)

2. What happens in a microscopic neighbourhood of ξcrit?

α-dependent sub-intervals −→ full intervals Σ1 ∪ Σ2

Airy local parametrix −→ Bessel local parametrix
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Interaction dynamic:

1. Interaction with another soliton? Numerical experiments by G. El et al.

Figure: From Carbone, Dutyk, El, ’16.
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2. Collision with another soliton gas? Numerical experimens by G. El et al.

Figure: From Carbone, Dutyk, El, ’16.
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Thank you for your attention!
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