A KdV soliton gas: asymptotic analysis via Riemann-Hilbert problems

Manuela Girotti
joint with Ken McLaughling (CSU) and Tamara Grava (SISSA-Bristol)

Midwestern Workshop on Asymptotic Analysis, IU Bloomington, October 6th 2018

Table of contents

(1) Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem
(2) Asymptotics of the initial condition $u(x, 0)$ for large x 's
(3) Large time behaviour of the potential $u(x, t)$
- The super-critical case
- The sub-critical case

4 To be continued...
(1) Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problemAsymptotics of the initial condition $u(x, 0)$ for large x 'sLarge time behaviour of the potential $u(x, t)$
- The super-critical case
- The sub-critical caseTo be continued...

The KdV equation

In 1834 the Scottish engineer John Scott-Russell accidentally observed a surface water wave in the Union Canal between Edinburgh and Glasgow that appeared to be a spatially localized traveling wave, that he called "great wave of translation".

In 1895 , D. J. Korteweg and G. de Vries proposed the following equation to describe this phenomenon:

$$
u_{t}-6 u u_{x}+u_{x x x}=0 .
$$

The one-soliton solution

The simplest wave solution is:

$$
u(x, t)=\varphi_{v}(x-v t)
$$

With this ansatz, the PDE becomes an ODE in the variable $\xi=x-v t$

$$
-v \varphi_{v}^{\prime}-6 \varphi_{v} \varphi_{v}^{\prime}+\varphi_{v}^{\prime \prime \prime}=0
$$

One solution is a rapidly decreasing, localized travelling wave (soliton):

$$
u(x, t)=-\frac{v}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}\left(x-v t-x_{0}\right)\right)
$$

$$
u(x, t)=-\frac{v}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}\left(x-v t-x_{0}\right)\right)
$$

Remark

- In order to have a real solution, we need $v>0$, which in turn implies that the wave-solution can move only to the right.
- The amplitude of the wave is proportional to the speed v, thus larger amplitude solitary waves move with a higher speed than smaller amplitude waves.

The periodic soliton solution

Starting again from the ansatz:

$$
u(x, t)=\varphi_{v}(x-v t)
$$

and imposing a periodicity condition, the solution (periodic travelling wave) can be written in terms of Jacobi elliptic functions:

$$
u(x, t)=\beta_{1}-\beta_{2}-\beta_{3}-2\left(\beta_{1}-\beta_{3}\right) \operatorname{dn}^{2}\left(\sqrt{\beta_{1}-\beta_{3}}\left(x-2\left(\beta_{1}+\beta_{2}+\beta_{3}\right) t\right)+x_{0} \mid m\right)
$$

where $\operatorname{dn}(z \mid m)$ is the Jacobi elliptic function of modulus $m=\frac{\beta_{2}-\beta_{3}}{\beta_{1}-\beta_{3}}$ and $\beta_{1}>\beta_{2}>\beta_{3}$.

Looking for other solutions...

The Cauchy problem (Gardner-Greene-Kruskal-Miura, '67) :

$$
\left\{\begin{array}{l}
u_{t}-6 u u_{x}+u_{x x x}=0 \\
u(x, 0)=q(x)
\end{array}\right.
$$

for rapidly decaying initial data: $q(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
pair of linear differential operators (Lax, '68):

Equivalently, the compatibility condition can be presented as the existence of a simultaneous solution to the pair of equations:
where $E \in \mathbb{R}$ is the spectral parameter.

KdV and solitons

Looking for other solutions...

The Cauchy problem (Gardner-Greene-Kruskal-Miura, '67) :

$$
\left\{\begin{array}{l}
u_{t}-6 u u_{x}+u_{x x x}=0 \\
u(x, 0)=q(x)
\end{array}\right.
$$

for rapidly decaying initial data: $q(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
This nonlinear PDE is integrable, arising as the compatibility condition of a Lax pair of linear differential operators (Lax, '68):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{L}=[\mathcal{B}, \mathcal{L}]
$$

with

$$
\mathcal{L}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+u, \quad \mathcal{B}=-4 \frac{\mathrm{~d}^{3}}{\mathrm{~d} x^{3}}+6 u \frac{\mathrm{~d}}{\mathrm{~d} x}+3 u_{x} .
$$

Equivalently, the compatibility condition can be presented as the existence of a simultaneous solution to the pair of equations:

$$
\mathcal{L} \phi=E \phi, \quad \phi_{t}=\mathcal{B} \phi
$$

where $E \in \mathbb{R}$ is the spectral parameter.

Solving the Schrödinger equation

We start from

$$
\mathcal{L} \phi=E \phi,
$$

where $\mathcal{L}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)$ is the Schrödinger operator with potential $V(x)=u(x, 0)=q(x)$ (no dependence on time... yet!).

Using tools from spectral theory, GGKM calculated the scattering data, which will allow to find the solution ϕ to the Schrödinger equation:

Solving the Schrödinger equation

We start from

$$
\mathcal{L} \phi=E \phi
$$

where $\mathcal{L}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)$ is the Schrödinger operator with potential $V(x)=u(x, 0)=q(x)$ (no dependence on time... yet!).

Using tools from spectral theory, GGKM calculated the scattering data, which will allow to find the solution ϕ to the Schrödinger equation:

$$
\mathcal{S}=\left\{-\lambda_{1}^{2}, \ldots,-\lambda_{n}^{2}\right. \text { eigenvalues }
$$

c_{1}, \ldots, c_{n} norming constant of the eigenfunctions, $r(\lambda)$ reflection coefficient of the "scattering" solutions $\left.\phi_{ \pm}(x)\right\}$

Turning on time

If the potential $V_{t}(x)=u(x, t)$ depends also on a (time) parameter t, one expects the scattering data $\mathcal{S}=\left\{\left\{-\lambda_{j}^{2}\right\},\left\{c_{j}\right\}, r(\lambda)\right\}$ to vary with t as well. then the scattering data $\mathcal{S}(t)$ evolve in a very simple and explicit manner (GGMK, (1) the discrete eigenvalues are constant:
(3) same for the reflection coefficient

Turning on time

If the potential $V_{t}(x)=u(x, t)$ depends also on a (time) parameter t, one expects the scattering data $\mathcal{S}=\left\{\left\{-\lambda_{j}^{2}\right\},\left\{c_{j}\right\}, r(\lambda)\right\}$ to vary with t as well.

If the t dependence of $u(x, t)$ is given in terms of the KdV equation,

$$
u_{t}=-u_{x x x}+6 u u_{x},
$$

then the scattering data $\mathcal{S}(t)$ evolve in a very simple and explicit manner (GGMK, '67):
(1) the discrete eigenvalues are constant: $E=-\lambda_{j}^{2}$;
(2) the norming constants have exponential behaviour: $c_{j}(t)=c_{j}(0) e^{A \lambda_{j}^{3} t}$;
(3) same for the reflection coefficient: $r(\lambda ; t)=r(\lambda ; 0) e^{i B \lambda^{3} t}$.

Solve the Cauchy initial-value problem for KdV

Recipe:

Solve the Cauchy initial-value problem for KdV

Recipe:

Calculate the scattering data: $\mathcal{S}=\left\{\left\{-\lambda_{j}^{2}\right\},\left\{c_{j}\right\}, r(\lambda)\right\}$

Solve the Cauchy initial-value problem for KdV

Recipe:

Direct Scattering:
Lax pair
$\frac{\mathrm{d}}{\mathrm{d} t} L=[B, L]$

Calculate the time-evolved scattering data $\mathcal{S}(t)$, imposing $u(x, t)$ to be a solution of KdV: $u_{t}=6 u u_{x}-u_{x x x}$.

Solve the Cauchy initial-value problem for KdV

Recipe:

Construct the inverse scattering map to obtain the solution $u(x, t)$:

- Marchenko integral equation (Gelfand-Levitan-Marchenko, 1950's)
- Riemann-Hilbert problem (Deift-Zhou, '93; Grunert-Teschl, '09)

Where is the soliton?

Suppose that $u(x, 0)=q(x)$ is such that the corresponding Schrödinger operator has only one eigenvalue $E=-\lambda_{1}^{2}$ and no reflection coefficient $r(\lambda) \equiv 0$.

The solution $u(x, t)$ is a 1 -soliton solution:

$$
u(x, t)=-\frac{v}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}\left(x-v t-x_{0}\right)\right)
$$

where $v=\lambda_{1}^{2}$.

In general,
a (AMn1ti) soliton solutions comespond to the (discrete) eigenvalues $\left\{-\lambda^{2}\right\}$ of the
(2) The reflection coefficient $r(\lambda)$ corresponds to a radiative part (associated to
the continuous spectrum). Qualitatively, the linear radiation propagates to

Where is the soliton?

Suppose that $u(x, 0)=q(x)$ is such that the corresponding Schrödinger operator has only one eigenvalue $E=-\lambda_{1}^{2}$ and no reflection coefficient $r(\lambda) \equiv 0$.

The solution $u(x, t)$ is a 1 -soliton solution:

$$
u(x, t)=-\frac{v}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}\left(x-v t-x_{0}\right)\right)
$$

where $v=\lambda_{1}^{2}$.

In general,
(1) (Multi)-soliton solutions correspond to the (discrete) eigenvalues $\left\{-\lambda_{j}^{2}\right\}$ of the Schrödinger operator $\mathcal{L}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+u$.
(2) The reflection coefficient $r(\lambda)$ corresponds to a radiative part (associated to the continuous spectrum). Qualitatively, the linear radiation propagates to the left and the amplitude decays in time at rate t^{-1}.

What's so special about solitons?

- Solitons are solitary wave (localised travelling wave) solution of the KdV equation.
- Solitons corresponds to the (discrete) eigenvalues of the Schrödinger operator and they arise in the long-time behaviour of the solution.
- The interaction between solitons is elastic!

$$
u(x, t) \rightarrow \sum_{j=1}^{N} \varphi_{v_{j}}\left(x-v_{j} t+\delta_{j}^{ \pm}\right) \quad \text { as } t \rightarrow \pm \infty
$$

They "survive" collisions (Zabusky-Kruskal, '65), despite lack of superposition principle.
(courtesy of Peter Miller)
(1) Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problemAsymptotics of the initial condition $u(x, 0)$ for large x 'sLarge time behaviour of the potential $u(x, t)$
- The super-critical case
- The sub-critical caseTo be continued..

What is a soliton gas? (Zakharov, '71)

Recent interest revolves around the computation of statistical quantities describing the evolution of random configurations of a large number of solitons ("soliton ensemble").

Let
$f_{\lambda}(x, t) \mathrm{d} \lambda \mathrm{d} x=\left\{\begin{array}{c}\text { number of solitons with the spectral parameter }(\lambda, \lambda+\mathrm{d} \lambda) \\ \text { located in the spatial interval }(x, x+\mathrm{d} x) \text { at time } t\end{array}\right\}$

Definition

A soliton gas is an infinite collection of solitons randomly distributed on \mathbb{R} with non-zero (physical) density

$$
\varrho(x, t)=\int_{I} f_{\lambda}(x, t) \mathrm{d} \lambda
$$

The nonlinear wave field

$$
u(x, t)
$$

solving the KdV equation in this setting is called integrable soliton turbulence.

Figure: The initial condition (a) and the final state (b) of a random KdV soliton gas simulated with $N=200$ solitons. From Dutykh, Pelinovsky, '14.
$\underline{\text { Recipe: }}$

What is a RH problem...

RH problem

Given a set of oriented contours Σ in the complex plane, find a (matrix-valued) function X such that:
(1) X is holomorphic in $\mathbb{C} \backslash \Sigma$;
(2) jump condition: there exists (finite) the limit of X as λ approaches the contours $X_{ \pm}(\lambda)$ such that

$$
X_{+}(\lambda)=X_{-}(\lambda) J(\lambda) \quad \lambda \in \Sigma
$$

(3) normalization at infinity:

$$
X(\lambda)=I+\mathcal{O}\left(\frac{1}{\lambda}\right) \quad \lambda \rightarrow \infty
$$

Remark

Explicit solutions are extremely rare!

The soliton gas and the Riemann-Hilbert problem

Soliton gas as a limit of N solitons

A pure N-soliton solution $(r(\lambda) \equiv 0)$ is described by
$M(\lambda) \in \operatorname{Vec}_{2}(\mathbb{C})$ meromorphic in $\mathbb{C} \backslash\left\{\lambda_{j}, \bar{\lambda}_{j}\right\}_{j=1}^{N}$

$$
\begin{aligned}
& \operatorname{res}_{\lambda=\lambda_{j}} M=\lim _{\lambda \rightarrow \lambda_{j}} M(\lambda)\left[\begin{array}{cc}
0 & 0 \\
\frac{c_{j} e^{2 i \lambda_{j} x}}{N} & 0
\end{array}\right] \\
& \operatorname{res} M=\lim _{\lambda \rightarrow \overline{\lambda_{j}}} M(\lambda)\left[\begin{array}{cc}
0 & \frac{-c_{j} e^{-2 i \overline{\lambda_{j} x}}}{N} \\
0 & 0
\end{array}\right] \\
& M(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\lambda^{-1}\right)
\end{aligned} \quad \lambda \rightarrow \infty \quad .
$$

with

$$
c_{j}=\frac{i\left(\eta_{2}-\eta_{1}\right)}{\pi} r_{1}\left(\lambda_{j}\right) .
$$

And the solution u can be recovered as

$$
u(x)=2 \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\lim _{\lambda \rightarrow \infty} \frac{\lambda}{i}\left(M_{1}(\lambda)-1\right)\right] .
$$

Then, we take the limit as $N \nearrow+\infty$ assuming that the poles/solitons accumulates within $\left[i \eta_{1}, i \eta_{2}\right] \cup\left[-i \eta_{2},-i \eta_{1}\right]$ and we obtain the RH problem for a soliton gas.
\square

Then, we take the limit as $N \nearrow+\infty$ assuming that the poles/solitons accumulates within $\left[i \eta_{1}, i \eta_{2}\right] \cup\left[-i \eta_{2},-i \eta_{1}\right]$ and we obtain the RH problem for a soliton gas.

Theorem (G., Grava, McLaughlin, '18)

The Riemann-Hilbert problem for a KdV soliton gas can be derived as a (uniform) limit of a meromorphic Riemann-Hilbert problem for N solitons as $N \nearrow+\infty$.
$X(\lambda) \in \operatorname{Vec}_{2}(\mathbb{C})$ meromorphic in $\mathbb{C} \backslash\left\{i \Sigma_{1} \cup i \Sigma_{2}\right\}$

$$
\begin{aligned}
& X_{+}(\lambda)=X_{-}(\lambda)\left\{\begin{array}{ccc}
{\left[\begin{array}{cc}
1 & 0 \\
-i r_{1}(\lambda) e^{2 i \lambda x} & 1
\end{array}\right]} & \lambda \in i \Sigma_{1} \\
1 & i r_{1}(\lambda) e^{-2 i \lambda x} \\
0 & 1
\end{array}\right] \\
& \lambda \in i \Sigma_{2} \\
& X(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\lambda^{-1}\right) \quad \lambda \rightarrow \infty
\end{aligned}
$$

Finally, the solution u is still given as

$$
u(x)=2 \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\lim _{\lambda \rightarrow \infty} \frac{\lambda}{i}\left(X_{1}(\lambda)-1\right)\right]
$$

Remark

This $R H$ problem is a special case of the soliton gas $R H$ problem proposed by Dyachenko-Zakharov-Zakharov ('16).Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem
(2) Asymptotics of the initial condition $u(x, 0)$ for large x 'sLarge time behaviour of the potential $u(x, t)$
- The super-critical case
- The sub-critical caseTo be continued...

The RH problem for the potential at initial time

$$
\begin{array}{ll}
Y_{+}(\lambda)=Y_{-}(\lambda)\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 0 \\
-i r(\lambda) e^{-2 \lambda x} & 1
\end{array}\right]} & \lambda \in\left[\eta_{1}, \eta_{2}\right]=: \Sigma_{1} \\
-1 \quad i r(\lambda) e^{2 \lambda x} \\
0 & 1
\end{array}\right] & \lambda \in\left[-\eta_{2},-\eta_{1}\right]=: \Sigma_{2} \\
Y(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\frac{1}{\lambda}\right) \quad \lambda \rightarrow \infty .
\end{array}
$$

$$
\Sigma_{1}
$$

We recover $u(x)$ as

$$
u(x)=2 \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\lim _{\lambda \rightarrow \infty} \lambda\left(Y_{1}(\lambda)-1\right)\right] .
$$

Large positive x 's

When $x \nearrow+\infty$, we have

$$
e^{-2 \lambda x} \rightarrow 0 \quad \text { on } \Sigma_{1} \quad \text { and } \quad e^{2 \lambda x} \rightarrow 0 \quad \text { on } \Sigma_{2},
$$

leaving us with

$$
\begin{array}{ll}
Y_{+}(\lambda ; x)=Y_{-}(\lambda ; x)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & \lambda \in \Sigma_{1} \cup \Sigma_{2} \\
Y(\lambda ; x)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\frac{1}{\lambda}\right) & \lambda \rightarrow \infty
\end{array}
$$

up to exponentially small terms.
and the KdV potential is

Large positive x 's

When $x \nearrow+\infty$, we have

$$
e^{-2 \lambda x} \rightarrow 0 \quad \text { on } \Sigma_{1} \quad \text { and } \quad e^{2 \lambda x} \rightarrow 0 \quad \text { on } \Sigma_{2},
$$

leaving us with

$$
\begin{array}{ll}
Y_{+}(\lambda ; x)=Y_{-}(\lambda ; x)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & \lambda \in \Sigma_{1} \cup \Sigma_{2} \\
Y(\lambda ; x)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\frac{1}{\lambda}\right) & \lambda \rightarrow \infty
\end{array}
$$

up to exponentially small terms.
Then the solution is clearly

$$
Y=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\{\text { small terms }\}
$$

and the KdV potential is

$$
u(x)=2 \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\lim _{\lambda \rightarrow \infty} \lambda\left(Y_{1}-1\right)\right]=0+\{\text { small terms }\} \quad \text { for } x \gg 1 .
$$

Large negative x 's: the Deift-Zhou steepest descent method

On the other hand, when $x \searrow-\infty$, we have

$$
e^{\mp 2 \lambda x} \rightarrow+\infty \quad \text { on } \Sigma_{1 / 2} .
$$

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

Large negative x 's: the Deift-Zhou steepest descent method

On the other hand, when $x \searrow-\infty$, we have

$$
e^{\mp 2 \lambda x} \rightarrow+\infty \quad \text { on } \Sigma_{1 / 2} .
$$

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

$$
Y \mapsto T \mapsto U \mapsto \ldots \mapsto S
$$

Large negative x 's: the Deift-Zhou steepest descent method

On the other hand, when $x \searrow-\infty$, we have

$$
e^{\mp 2 \lambda x} \rightarrow+\infty \quad \text { on } \Sigma_{1 / 2} .
$$

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

$$
Y \mapsto T \mapsto U \mapsto \ldots \mapsto S
$$

in such away that, in the regime $x \ll-1$, the final RH problem S can be solved by an approximating solution Ω (the "model problem"):

$$
S \sim \Omega
$$

The (matrix) model problem

The global parametrix $P^{(\infty)}: P_{+}^{(\infty)}(\lambda)=P_{-}^{(\infty)}(\lambda) J_{\infty}$

with $P^{(\infty)}(\lambda)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\mathcal{O}\left(\lambda^{-1}\right)$ as $\lambda \rightarrow \infty$.
The construction of the solution relies on the ϑ-function associated to the genus- 1 Riemann surface $\mathfrak{X}=\left\{(\lambda, \eta) \in \mathbb{C}^{2} \mid \eta^{2}=\left(\lambda^{2}-\eta_{1}^{2}\right)\left(\lambda^{2}-\eta_{2}^{2}\right)\right\}$.

$P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda= \pm \eta_{2}, \pm \eta_{1}$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{\left(\pm \eta_{j}\right)}$:

$P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda= \pm \eta_{2}, \pm \eta_{1}$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{\left(\pm \eta_{j}\right)}$:

Call Ω the "alleged" approximant built out of the global parametrix $P^{(\infty)}$ and the four local parametrices $P^{\left(\pm \eta_{j}\right)}$.

Question: how well does Ω approximate $S^{\prime \prime}$
$P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda= \pm \eta_{2}, \pm \eta_{1}$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{\left(\pm \eta_{j}\right)}$:

Call Ω the "alleged" approximant built out of the global parametrix $P^{(\infty)}$ and the four local parametrices $P^{\left(\pm \eta_{j}\right)}$.

Question: how well does Ω approximate S ?

$$
S(\lambda) \sim \Omega(\lambda)
$$

Small-norm argument

Consider the ratio

$$
R:=S \Omega^{-1} .
$$

Then,

$$
\begin{cases}R_{+}(\lambda)=R_{-}(\lambda)(I+\delta V(\lambda)) & \text { on the contours, with } \delta V=\mathcal{O}\left(|x|^{-*}\right) \\
R(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\frac{1}{\lambda}\right) & \lambda \rightarrow \infty\end{cases}
$$

It follows that

$$
R(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(|x|^{-*}\right),
$$

meaning

$$
S(\lambda)=R(\lambda) \Omega(\lambda)=\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(|x|^{-*}\right)\right) \Omega(\lambda)
$$

The solution

Theorem (G., Grava, McLaughlin, '18)

In the regime $x \searrow-\infty$, with $\frac{x \Omega+\Delta}{2 \pi i} \neq \frac{2 n+1}{2}, n \in \mathbb{Z}$, the potential $u(x)$ has the following asymptotic behaviour

$$
u(x)=\eta_{2}^{2}-\eta_{1}^{2}-2 \eta_{2}^{2} \operatorname{dn}^{2}\left(\eta_{2}(x+\phi)+K(m) \mid m\right)+\mathcal{O}\left(|x|^{-1}\right)
$$

where $\operatorname{dn}(z \mid m)$ is the Jacobi elliptic function of modulus $m=\eta_{1} / \eta_{2}, K(m)$ is the complete elliptic integrals of second kind of modulus m and ϕ is given by

$$
\phi=\int_{\eta_{1}}^{\eta_{2}} \frac{\log r(\zeta)}{R_{+}(\zeta)} \frac{\mathrm{d} \zeta}{\pi i} \in \mathbb{R}
$$

$u(x)$ is a periodic wave with

The solution

Theorem (G., Grava, McLaughlin, '18)

In the regime $x \searrow-\infty$, with $\frac{x \Omega+\Delta}{2 \pi i} \neq \frac{2 n+1}{2}, n \in \mathbb{Z}$, the potential $u(x)$ has the following asymptotic behaviour

$$
u(x)=\eta_{2}^{2}-\eta_{1}^{2}-2 \eta_{2}^{2} \operatorname{dn}^{2}\left(\eta_{2}(x+\phi)+K(m) \mid m\right)+\mathcal{O}\left(|x|^{-1}\right)
$$

where $\operatorname{dn}(z \mid m)$ is the Jacobi elliptic function of modulus $m=\eta_{1} / \eta_{2}, K(m)$ is the complete elliptic integrals of second kind of modulus m and ϕ is given by

$$
\phi=\int_{\eta_{1}}^{\eta_{2}} \frac{\log r(\zeta)}{R_{+}(\zeta)} \frac{\mathrm{d} \zeta}{\pi i} \in \mathbb{R} .
$$

$u(x)$ is a periodic wave with

- period $=\frac{2 K(m)}{\eta_{2}}$;
- amplitude $=2 \eta_{1}^{2}$;
- average value of $u(x)$ over an oscillation:

$$
<u(x)>=\eta_{2}^{2}-\eta_{1}^{2}-2 \eta_{2}^{2} \frac{E(m)}{K(m)}
$$

Note:

There is an issue for some values of x : for

$$
\frac{x \Omega+\Delta}{2 \pi i}=\frac{2 n+1}{2}, \quad n \in \mathbb{Z}
$$

we cannot build a matrix model problem, therefore the small norm argument cannot be used.

Work in progress...Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem

2 Asymptotics of the initial condition $u(x, 0)$ for large x 's
(3) Large time behaviour of the potential $u(x, t)$

- The super-critical case
- The sub-critical caseTo be continued...

Switching on time!

Replace

$$
2 \lambda x \mapsto 2 \lambda x-8 \lambda^{3} t
$$

in the exponentials (evolution of the reflection coefficient).

$$
\begin{aligned}
& Y_{+}(\lambda)=Y_{-}(\lambda)\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 0 \\
-i r(\lambda) e^{-2 \lambda x+8 \lambda^{3} t} & 1
\end{array}\right]} & \lambda \in \Sigma_{1} \\
{\left[\begin{array}{ll}
1 & i r(\lambda) e^{2 \lambda x-8 \lambda^{3} t} \\
0 & 1
\end{array}\right]}
\end{array}\right. \\
& Y(\lambda)=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathcal{O}\left(\frac{1}{\lambda}\right) \quad \lambda \rightarrow \infty .
\end{aligned}
$$

The phase in the jumps

$$
2 \lambda x-8 \lambda^{3} t=-8 t \lambda\left(\lambda^{2}-\frac{x}{4 t}\right)
$$

shows different sign depending on the value of the quantity

$$
\xi:=\frac{x}{4 t}
$$

There are three main domains:

[^0]The phase in the jumps

$$
2 \lambda x-8 \lambda^{3} t=-8 t \lambda\left(\lambda^{2}-\frac{x}{4 t}\right)
$$

shows different sign depending on the value of the quantity

$$
\xi:=\frac{x}{4 t}
$$

There are three main domains:

- $\eta_{2}^{2}<\xi$ (trivial case): the phases are exponentially decaying as $t \nearrow+\infty$, therefore (by a small norm argument)

$$
u(x, t)=\mathcal{O}\left(t^{-\infty}\right)
$$

- $\xi_{\text {crit }}<\xi<\eta_{2}^{2}$ (super-critical case): $u(x, t)$ is a periodic travelling wave
- $\xi<\xi_{\text {crit }}$ (sub-critical case): $u(x, t)$ is a periodic travelling wave with fixed

The phase in the jumps

$$
2 \lambda x-8 \lambda^{3} t=-8 t \lambda\left(\lambda^{2}-\frac{x}{4 t}\right)
$$

shows different sign depending on the value of the quantity

$$
\xi:=\frac{x}{4 t}
$$

There are three main domains:

- $\eta_{2}^{2}<\xi$ (trivial case): the phases are exponentially decaying as $t \nearrow+\infty$, therefore (by a small norm argument)

$$
u(x, t)=\mathcal{O}\left(t^{-\infty}\right)
$$

- $\xi_{\text {crit }}<\xi<\eta_{2}^{2}$ (super-critical case): $u(x, t)$ is a periodic travelling wave with slowly varying parameters.

The phase in the jumps

$$
2 \lambda x-8 \lambda^{3} t=-8 t \lambda\left(\lambda^{2}-\frac{x}{4 t}\right)
$$

shows different sign depending on the value of the quantity

$$
\xi:=\frac{x}{4 t}
$$

There are three main domains:

- $\eta_{2}^{2}<\xi$ (trivial case): the phases are exponentially decaying as $t \nearrow+\infty$, therefore (by a small norm argument)

$$
u(x, t)=\mathcal{O}\left(t^{-\infty}\right)
$$

- $\xi_{\text {crit }}<\xi<\eta_{2}^{2}$ (super-critical case): $u(x, t)$ is a periodic travelling wave with slowly varying parameters.
- $\xi<\xi_{\text {crit }}$ (sub-critical case): $u(x, t)$ is a periodic travelling wave with fixed parameters.Background and motivations
- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem

2 Asymptotics of the initial condition $u(x, 0)$ for large x 's
(3) Large time behaviour of the potential $u(x, t)$

- The super-critical case
- The sub-critical caseTo be continued...

The super-critical case: α-dependency

Proposition

Let $\xi<\eta_{2}^{2}$. There exists

$$
\xi_{\text {crit }} \in \mathbb{R}
$$

such that

$$
\text { for each } \xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right] \text { there exists a unique } \alpha=\alpha\left(\xi ; \eta_{1}, \eta_{2}\right) \in\left[\eta_{1}, \eta_{2}\right] \text {. }
$$

The super-critical case: α-dependency

Proposition

Let $\xi<\eta_{2}^{2}$. There exists

$$
\xi_{\text {crit }} \in \mathbb{R}
$$

such that

$$
\text { for each } \xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right] \text { there exists a unique } \alpha=\alpha\left(\xi ; \eta_{1}, \eta_{2}\right) \in\left[\eta_{1}, \eta_{2}\right] \text {. }
$$

We can now proceed with the transformations

$$
Y \xrightarrow{g-\text { function }} T \xrightarrow{\text { opening lenses }} S
$$

and get to the model problem $\Omega(\lambda)$.

The (matrix) model problem

The global parametrix $P^{(\infty)}$:

the construction of the solution relies on the ϑ_{3}-function associated to the genus- 1 Riemann surface $\mathfrak{X}_{\alpha}=\left\{(\lambda, \eta) \in \mathbb{C}^{2} \mid \eta^{2}=R_{\alpha}^{2}(\lambda)=\left(\lambda^{2}-\alpha^{2}\right)\left(\lambda^{2}-\eta_{2}^{2}\right)\right\}$.

Plus four local parametrices $P^{\left(\pm \eta_{2}\right)}$ and $P^{(\pm \alpha)}$:

Back to the potential $u(x, t)$

Theorem (G., Grava, McLaughlin, '18)

Given $\xi=\frac{x}{4 t}$, for $\frac{t \widetilde{\Omega}+\widetilde{\Delta}}{2 \pi i} \neq \frac{2 n+1}{2}, n \in \mathbb{Z}$, in the region $\xi_{\text {crit }}<\xi<\eta_{2}^{2}$ the solution of the $K d V$ equation in the large time limit is

$$
u(x, t)=\eta_{2}^{2}-\alpha^{2}-2 \eta_{2}^{2} \operatorname{dn}^{2}\left(\eta_{2}\left(x-2\left(\alpha^{2}+\eta_{2}^{2}\right) t+\widetilde{\phi}\right)+K\left(m_{\alpha}\right) \mid m_{\alpha}\right)+\mathcal{O}\left(t^{-1}\right)
$$

where $\operatorname{dn}(z \mid m)$ is the Jacobi elliptic function of modulus $m_{\alpha}=\frac{\alpha}{\eta_{2}}$,

$$
\widetilde{\phi}=\int_{\alpha}^{\eta_{2}} \frac{\log r(\zeta)}{R_{\alpha+}(\zeta)} \frac{\mathrm{d} \zeta}{\pi i} \in \mathbb{R}
$$

and the parameter $\alpha=\alpha(\xi)$ is determined from the equation

$$
\xi=\frac{\eta_{2}^{2}}{2}\left[1+m_{\alpha}^{2}+2 \frac{m_{\alpha}^{2}\left(1-m_{\alpha}^{2}\right)}{1-m_{\alpha}^{2}-\frac{E\left(m_{\alpha}\right)}{K\left(m_{\alpha}\right)}}\right] .
$$Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem

2 Asymptotics of the initial condition $u(x, 0)$ for large x 's
(3) Large time behaviour of the potential $u(x, t)$

- The super-critical case
- The sub-critical caseTo be continued..

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\mathrm{crit}}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\mathrm{crit}}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\mathrm{crit}}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition
The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition

The value of α monotonically decreases as ξ decreases for $\xi \in\left[\xi_{\text {crit }}, \eta_{2}^{2}\right]$.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition

For $\xi<\xi_{\text {crit }}$ the value of α remains always smaller than η_{1}.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Proposition

For $\xi<\xi_{\text {crit }}$ the value of α remains always smaller than η_{1}.

The sub-critical case

For $\xi<\xi_{\text {crit }}$ we have a phase transition:

Recipe:

- Similar construction of the model problem, without the α dependency.
- The local parametrices at the endpoints are four Bessel parametrices.

Theorem (G., Grava, McLaughlin, '18)

In the regime $t \nearrow+\infty, \xi \leq \xi_{\text {crit }}, \frac{t \widetilde{\Omega}+\widetilde{\Omega}}{2 \pi i} \neq \frac{2 n+1}{2}, n \in \mathbb{Z}$, the potential $u(x, t)$ has the following asymptotic expansion
$u(x, t)=\eta_{2}^{2}-\eta_{1}^{2}-2 \eta_{2}^{2} \operatorname{dn}^{2}\left(\eta_{2}\left(x-2\left(\eta_{1}^{2}+\eta_{2}^{2}\right) t+\phi\right)+K(m) \mid m\right)+\mathcal{O}\left(t^{-1}\right)$,
where $m=\eta_{1} / \eta_{2}$, and

$$
\phi=\int_{\eta_{1}}^{\eta_{2}} \frac{\log r(\zeta)}{R_{+}(\zeta)} \frac{\mathrm{d} \zeta}{\pi i}
$$

Conclusion: complete description of a (free) soliton gas potential in the large time regime over the whole real line $x \in \mathbb{R}$.

Figure: The asymptotic behaviour of the soliton gas solution. Here $t=10, \eta_{1}=0.5$ and $\eta_{2}=1.5$ and $r(\lambda) \equiv 1$.Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problemAsymptotics of the initial condition $u(x, 0)$ for large x 'sLarge time behaviour of the potential $u(x, t)$
- The super-critical case
- The sub-critical case
(4) To be continued...

Work in progress and future developments

Reflection coefficients:

1. RH problem with two reflection coefficients r_{1} and r_{2} (Dyachenko, Zakharov, Zakharov, '16):

$$
Y_{+}(\lambda)=Y_{-}(\lambda) \begin{cases}\frac{1}{1+r_{1} r_{2}}\left[\begin{array}{cc}
1-r_{1} r_{2} & -i r_{2} e^{2 \lambda x} \\
-i r_{1} e^{-2 \lambda x} & 1-r_{1} r_{2}
\end{array}\right] & \text { on } \Sigma_{1} \\
\frac{1}{1+r_{1} r_{2}}\left[\begin{array}{cc}
1-r_{1} r_{2} & i r_{1} e^{2 \lambda x} \\
i r_{2} e^{-2 \lambda x} & 1-r_{1} r_{2}
\end{array}\right] & \text { on } \Sigma_{2}\end{cases}
$$

Multi-band reflection coefficients: the spectral parameter accumulates in two or more disconnected components $\left\{\Sigma_{1, j} \cup \Sigma_{2, j}\right\}_{j=1, \ldots, M}$

Work in progress and future developments

Reflection coefficients:

1. RH problem with two reflection coefficients r_{1} and r_{2} (Dyachenko, Zakharov, Zakharov, '16):

$$
Y_{+}(\lambda)=Y_{-}(\lambda) \begin{cases}\frac{1}{1+r_{1} r_{2}}\left[\begin{array}{cc}
1-r_{1} r_{2} & -i r_{2} e^{2 \lambda x} \\
-i r_{1} e^{-2 \lambda x} & 1-r_{1} r_{2}
\end{array}\right] & \text { on } \Sigma_{1} \\
\frac{1}{1+r_{1} r_{2}}\left[\begin{array}{cc}
1-r_{1} r_{2} & i r_{1} e^{2 \lambda x} \\
i r_{2} e^{-2 \lambda x} & 1-r_{1} r_{2}
\end{array}\right] & \text { on } \Sigma_{2}\end{cases}
$$

2. Multi-band reflection coefficients: the spectral parameter accumulates in two or more disconnected components $\left\{\Sigma_{1, j} \cup \Sigma_{2, j}\right\}_{j=1, \ldots, M}$

Double scaling limit around the critical values of ξ :

1. What happens in a microscopic neighbourhood of η_{2}^{2} ?

trivial solution Y			
vanishing of the potential $u(x, t)$	\longrightarrow		introduction of a g-function
:---:			
boundedness of the potential $u(x, t)$			

Double scaling limit around the critical values of ξ :

1. What happens in a microscopic neighbourhood of η_{2}^{2} ?

trivial solution Y			
vanishing of the potential $u(x, t)$	\longrightarrow		introduction of a g-function
:---:			
boundedness of the potential $u(x, t)$			

2. What happens in a microscopic neighbourhood of $\xi_{\text {crit }}$?

$$
\alpha \text {-dependent sub-intervals } \quad \longrightarrow \quad \text { full intervals } \Sigma_{1} \cup \Sigma_{2}
$$

Airy local parametrix $\quad \longrightarrow \quad$ Bessel local parametrix

Interaction dynamic:

1. Interaction with another soliton? Numerical experiments by G. El et al.

Figure: From Carbone, Dutyk, El, '16.
2. Collision with another soliton gas? Numerical experimens by G. El et al.

Figure: From Carbone, Dutyk, El, '16.

Thank you for your attention!

[^0]: $\eta_{2}^{2}<\xi$ (trivial case): the phases are

