Background and motivations			
000000000000000000000000000000000000000	00000000	0000000000	0000

A KdV soliton gas: asymptotic analysis via Riemann–Hilbert problems

Manuela Girotti joint with Ken McLaughling (CSU) and Tamara Grava (SISSA-Bristol)

Midwestern Workshop on Asymptotic Analysis, IU Bloomington, October 6th 2018

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	00000000000	0000
Table of contents			

1 Background and motivations

- KdV and solitons
- The soliton gas and the Riemann-Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

4 To be continued...

Background and motivations			
••••••	0000000	0000000000	0000
KdV and solitons			

1 Background and motivations

• KdV and solitons

• The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

To be continued...

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
The KdV equation			

In 1834 the Scottish engineer John Scott-Russell accidentally observed a surface water wave in the Union Canal between Edinburgh and Glasgow that appeared to be a spatially localized traveling wave, that he called "great wave of translation".

In 1895, D. J. Korteweg and G. de Vries proposed the following equation to describe this phenomenon:

$$u_t - 6uu_x + u_{xxx} = 0.$$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
The one-soliton solution	1		

The simplest wave solution is:

$$u(x,t) = \varphi_v (x - vt).$$

With this ansatz, the PDE becomes an ODE in the variable $\xi = x - vt$

$$-v\varphi'_v - 6\varphi_v\varphi'_v + \varphi'''_v = 0$$

One solution is a rapidly decreasing, localized travelling wave (soliton):

$$u(x,t) = -\frac{v}{2}\operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}(x-vt-x_{0})\right)$$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			

$$u(x,t) = -\frac{v}{2}\operatorname{sech}^{2}\left(\frac{\sqrt{v}}{2}(x-vt-x_{0})\right)$$

Remark

- In order to have a real solution, we need v > 0, which in turn implies that the wave-solution can move only to the right.
- The amplitude of the wave is proportional to the speed v, thus larger amplitude solitary waves move with a higher speed than smaller amplitude waves.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
The periodic soliton s	solution		

Starting again from the ansatz:

$$u(x,t) = \varphi_v \left(x - vt \right)$$

and imposing a periodicity condition, the solution (periodic travelling wave) can be written in terms of Jacobi elliptic functions:

 $u(x,t) = \beta_1 - \beta_2 - \beta_3 - 2(\beta_1 - \beta_3) \operatorname{dn}^2 \left(\sqrt{\beta_1 - \beta_3} (x - 2(\beta_1 + \beta_2 + \beta_3)t) + x_0 \mid m \right)$ where dn $(z \mid m)$ is the Jacobi elliptic function of modulus $m = \frac{\beta_2 - \beta_3}{\beta_1 - \beta_3}$ and $\beta_1 > \beta_2 > \beta_3$.

Background and motivations				
000000000000000000000000000000000000000	0000000	0000000000	0000	
KdV and solitons				
Looking for other solutions				

The Cauchy problem (Gardner-Greene-Kruskal-Miura, '67) :

$$\begin{cases} u_t - 6uu_x + u_{xxx} = 0\\ u(x,0) = q(x) \end{cases}$$

for rapidly decaying initial data: $q(x) \to 0$ as $x \to \pm \infty$.

This nonlinear PDE is **integrable**, arising as the compatibility condition of a Lax pair of linear differential operators (Lax, '68):

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{L} = [\mathcal{B}, \mathcal{L}]$$

with

$$\mathcal{L} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + u, \qquad \mathcal{B} = -4\frac{\mathrm{d}^3}{\mathrm{d}x^3} + 6u\frac{\mathrm{d}}{\mathrm{d}x} + 3u_x \; .$$

Equivalently, the compatibility condition can be presented as the existence of a simultaneous solution to the pair of equations:

$$\mathcal{L}\phi = E\phi, \qquad \phi_t = \mathcal{B}\phi$$

where $E \in \mathbb{R}$ is the spectral parameter.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Looking for other solu	utions		

The Cauchy problem (Gardner-Greene-Kruskal-Miura, '67) :

$$\begin{cases} u_t - 6uu_x + u_{xxx} = 0\\ u(x,0) = q(x) \end{cases}$$

for rapidly decaying initial data: $q(x) \to 0$ as $x \to \pm \infty$.

This nonlinear PDE is **integrable**, arising as the compatibility condition of a Lax pair of linear differential operators (Lax, '68):

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{L} = [\mathcal{B}, \mathcal{L}]$$

with

$$\mathcal{L} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + u, \qquad \mathcal{B} = -4\frac{\mathrm{d}^3}{\mathrm{d}x^3} + 6u\frac{\mathrm{d}}{\mathrm{d}x} + 3u_x$$

Equivalently, the compatibility condition can be presented as the existence of a simultaneous solution to the pair of equations:

$$\mathcal{L}\phi = E\phi, \qquad \phi_t = \mathcal{B}\phi$$

where $E \in \mathbb{R}$ is the spectral parameter.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solving the Schröding	er equation		

We start from

$$\mathcal{L}\phi = E\phi,$$

where $\mathcal{L} := -\frac{d^2}{dx^2} + V(x)$ is the Schrödinger operator with potential V(x) = u(x, 0) = q(x) (no dependence on time... yet!).

Using tools from spectral theory, GGKM calculated the scattering data, which will allow to find the solution ϕ to the Schrödinger equation:

$$S = \{-\lambda_1^2, \ldots, -\lambda_n^2 \text{ eigenvalues}, \}$$

 c_1, \ldots, c_n norming constant of the eigenfunctions,

 $r(\lambda)$ reflection coefficient of the "scattering" solutions $\phi_{\pm}(x)$ }

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solving the Schröding	er equation		

We start from

$$\mathcal{L}\phi = E\phi,$$

where $\mathcal{L} := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x)$ is the Schrödinger operator with potential V(x) = u(x, 0) = q(x) (no dependence on time... yet!).

Using tools from spectral theory, GGKM calculated the **scattering data**, which will allow to find the solution ϕ to the Schrödinger equation:

$$\begin{split} \mathcal{S} &= \left\{-\lambda_1^2, \dots, -\lambda_n^2 \text{ eigenvalues}, \\ & c_1, \dots, c_n \text{ norming constant of the eigenfunctions}, \\ & r(\lambda) \text{ reflection coefficient of the "scattering" solutions } \phi_\pm(x) \right\} \end{split}$$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Turning on time			

If the potential $V_t(x) = u(x, t)$ depends also on a (time) parameter t, one expects the scattering data $S = \left\{\{-\lambda_j^2\}, \{c_j\}, r(\lambda)\right\}$ to vary with t as well.

If the t dependence of u(x,t) is given in terms of the KdV equation,

 $u_t = -u_{xxx} + 6uu_x,$

then the scattering data S(t) evolve in a very simple and explicit manner (GGMK, '67):

• the discrete eigenvalues are constant: $E = -\lambda_j^2$;

(a) the norming constants have exponential behaviour: $c_j(t) = c_j(0)e^{A\lambda_j^2 t}$;

(a) same for the reflection coefficient: $r(\lambda; t) = r(\lambda; 0)e^{iB\lambda^3 t}$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Turning on time			

If the potential $V_t(x) = u(x, t)$ depends also on a (time) parameter t, one expects the scattering data $S = \left\{\{-\lambda_j^2\}, \{c_j\}, r(\lambda)\right\}$ to vary with t as well.

If the t dependence of u(x,t) is given in terms of the KdV equation,

$$u_t = -u_{xxx} + 6uu_x,$$

then the scattering data S(t) evolve in a very simple and explicit manner (GGMK, '67):

- the discrete eigenvalues are constant: $E = -\lambda_j^2$;
- **2** the norming constants have exponential behaviour: $c_j(t) = c_j(0)e^{A\lambda_j^3 t}$;
- **3** same for the reflection coefficient: $r(\lambda; t) = r(\lambda; 0)e^{iB\lambda^3 t}$.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solve the Cauchy initia	al-value problem	n for KdV	

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solve the Cauchy initi	al-value problem	n for KdV	

Calculate the scattering data: $S = \left\{ \{-\lambda_j^2\}, \{c_j\}, r(\lambda) \right\}$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solve the Cauchy initi	al-value problem	n for KdV	

Calculate the time-evolved scattering data S(t), imposing u(x,t) to be a solution of KdV: $u_t = 6uu_x - u_{xxx}$.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Solve the Cauchy initi	al-value problem	n for KdV	

Construct the inverse scattering map to obtain the solution u(x, t):

- Marchenko integral equation (Gelfand-Levitan-Marchenko, 1950's)
- Riemann-Hilbert problem (Deift-Zhou, '93; Grunert-Teschl, '09)

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Where is the soliton?			

Suppose that u(x, 0) = q(x) is such that the corresponding Schrödinger operator has only one eigenvalue $E = -\lambda_1^2$ and no reflection coefficient $r(\lambda) \equiv 0$.

In general,

- (Multi)-soliton solutions correspond to the (discrete) eigenvalues $\{-\lambda_j^2\}$ of the Schrödinger operator $\mathcal{L} = -\frac{d^2}{dx^2} + u$.
- (a) The reflection coefficient $r(\lambda)$ corresponds to a radiative part (associated to the continuous spectrum). Qualitatively, the linear radiation propagates to the left and the amplitude decays in time at rate t^{-1} .

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			
Where is the soliton?			

Suppose that u(x, 0) = q(x) is such that the corresponding Schrödinger operator has only one eigenvalue $E = -\lambda_1^2$ and no reflection coefficient $r(\lambda) \equiv 0$.

In general,

- (Multi)-soliton solutions correspond to the (discrete) eigenvalues $\{-\lambda_j^2\}$ of the Schrödinger operator $\mathcal{L} = -\frac{d^2}{dx^2} + u$.
- **②** The reflection coefficient $r(\lambda)$ corresponds to a radiative part (associated to the continuous spectrum). Qualitatively, the linear radiation propagates to the left and the amplitude decays in time at rate t^{-1} .

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
KdV and solitons			

What's so special about solitons?

- Solitons are solitary wave (localised travelling wave) solution of the KdV equation.
- Solitons corresponds to the (discrete) eigenvalues of the Schrödinger operator and they arise in the long-time behaviour of the solution.
- The interaction between solitons is elastic!

$$u(x,t) \to \sum_{j=1}^{N} \varphi_{v_j} \left(x - v_j t + \delta_j^{\pm} \right) \quad \text{as } t \to \pm \infty$$

They "survive" collisions (Zabusky-Kruskal, '65), despite lack of superposition principle.

(courtesy of Peter Miller)

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
The soliton gas and the Riemann-Hil	bert problem		

Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

I To be continued...

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
The soliton gas and the Riemann-H	ilbert problem		
What is a soliton gas?	(Zakharov, '71)		

Recent interest revolves around the computation of statistical quantities describing the evolution of random configurations of a large number of solitons ("soliton ensemble").

Let

$$f_{\lambda}(x,t) \,\mathrm{d}\lambda \,\mathrm{d}x = \begin{cases} \text{number of solitons with the spectral parameter } (\lambda, \lambda + \mathrm{d}\lambda) \\ \text{located in the spatial interval } (x, x + \mathrm{d}x) \text{ at time } t \end{cases}$$

Definition

A soliton gas is an infinite collection of solitons randomly distributed on $\mathbb R$ with non-zero (physical) density

$$\varrho(x,t) = \int_I f_\lambda(x,t) \,\mathrm{d}\lambda.$$

The nonlinear wave field

u(x,t)

solving the KdV equation in this setting is called **integrable soliton turbulence**.

Figure: The initial condition (a) and the final state (b) of a random KdV soliton gas simulated with N = 200 solitons. From Dutykh, Pelinovsky, '14.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
The soliton gas and the Riemann-I	Hilbert problem		
	T7 1T7 1+.		

Find the solution of a KdV soliton gas equation

Recipe:

Background and motivations	Initial conditions	Large time behaviour	To be continued	
000000000000000000000000000000000000000	0000000	0000000000	0000	
The soliton gas and the Riemann-H	ilbert problem			
What is a RH problem				

RH problem

Given a set of oriented contours Σ in the complex plane, find a (matrix-valued) function X such that:

- **1** X is holomorphic in $\mathbb{C} \setminus \Sigma$;
- jump condition: there exists (finite) the limit of X as λ approaches the contours X_±(λ) such that

$$X_+(\lambda) = X_-(\lambda)J(\lambda) \qquad \lambda \in \Sigma;$$

③ normalization at infinity:

$$X(\lambda) = I + \mathcal{O}\left(\frac{1}{\lambda}\right) \qquad \lambda \to \infty.$$

Remark

Explicit solutions are extremely rare!

Background and motivations				
000000000000000000000000000000000000000	0000000	0000000000	0000	
The soliton gas and the Riemann-Hilbert problem				
Soliton gas as a limit	of N solitons			

A pure N-soliton solution $(r(\lambda)\equiv 0)$ is described by

$$M(\lambda) \in \operatorname{Vec}_2(\mathbb{C})$$
 meromorphic in $\mathbb{C} \setminus \left\{ \lambda_j, \overline{\lambda}_j \right\}_{j=1}^N$

$$\operatorname{res}_{\lambda=\lambda_{j}} M = \lim_{\lambda \to \lambda_{j}} M(\lambda) \begin{bmatrix} 0 & 0\\ \frac{c_{j}e^{2i\lambda_{j}x}}{N} & 0 \end{bmatrix}$$

$$\operatorname{res}_{\lambda = \overline{\lambda_j}} M = \lim_{\lambda \to \overline{\lambda_j}} M(\lambda) \begin{bmatrix} 0 & \frac{-c_j e^{-2i\lambda_j x}}{N} \\ 0 & 0 \end{bmatrix}$$
$$M(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}(\lambda^{-1}) \qquad \lambda \to \infty$$

with

$$c_j = \frac{i(\eta_2 - \eta_1)}{\pi} r_1(\lambda_j).$$

And the solution u can be recovered as

$$u(x) = 2 \frac{\mathrm{d}}{\mathrm{d}x} \left[\lim_{\lambda \to \infty} \frac{\lambda}{i} \left(M_1(\lambda) - 1 \right) \right].$$

....

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
The soliton gas and the Riemann-Hil	bert problem		

Then, we take the limit as $N \nearrow +\infty$ assuming that the poles/solitons accumulates within $[i\eta_1, i\eta_2] \cup [-i\eta_2, -i\eta_1]$ and we obtain the RH problem for a soliton gas.

Theorem (G., Grava, McLaughlin, '18)

The Riemann-Hilbert problem for a KdV soliton gas can be derived as a (uniform) limit of a meromorphic Riemann-Hilbert problem for N solitons as $N \nearrow +\infty$.

 $X(\lambda) \in \operatorname{Vec}_2(\mathbb{C})$ meromorphic in $\mathbb{C} \setminus \{i\Sigma_1 \cup i\Sigma_2\}$

 $X(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}(\lambda^{-1}) \qquad \lambda \to \infty.$

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000
The soliton gas and the Riemann-Hil	bert problem		

Then, we take the limit as $N \nearrow +\infty$ assuming that the poles/solitons accumulates within $[i\eta_1, i\eta_2] \cup [-i\eta_2, -i\eta_1]$ and we obtain the RH problem for a soliton gas.

Theorem (G., Grava, McLaughlin, '18)

The Riemann-Hilbert problem for a KdV soliton gas can be derived as a (uniform) limit of a meromorphic Riemann-Hilbert problem for N solitons as $N \nearrow +\infty$.

$$\begin{split} X(\lambda) \in \operatorname{Vec}_2(\mathbb{C}) \text{ meromorphic in } \mathbb{C} \setminus \{i\Sigma_1 \cup i\Sigma_2\} \\ X_+(\lambda) = X_-(\lambda) \begin{cases} \begin{bmatrix} 1 & 0 \\ -i r_1(\lambda) e^{2i\lambda x} & 1 \\ 1 & i r_1(\lambda) e^{-2i\lambda x} \\ 0 & 1 \end{bmatrix} & \lambda \in i\Sigma_2 \\ X(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O} \left(\lambda^{-1}\right) & \lambda \to \infty. \end{split}$$

Background and motivations			
00000000000000000000000	00000000	0000000000	0000
The soliton gas and the Riemann-Hil	bert problem		

Finally, the solution u is still given as

$$u(x) = 2 \frac{\mathrm{d}}{\mathrm{d}x} \left[\lim_{\lambda \to \infty} \frac{\lambda}{i} \left(X_1(\lambda) - 1 \right) \right].$$

Remark

This RH problem is a special case of the soliton gas RH problem proposed by Dyachenko-Zakharov-Zakharov ('16).

Background and motivations	Initial conditions		
000000000000000000000000000000000000000	0000000	0000000000	0000

Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

I To be continued...

Background and motivations	Initial conditions	Large time behaviour	To be continued
	•0000000	0000000000	0000
-			

The RH problem for the potential at initial time

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \begin{bmatrix} 1 & 0 \\ -i r(\lambda) e^{-2\lambda x} & 1 \end{bmatrix} & \lambda \in [\eta_{1}, \eta_{2}] =: \Sigma_{1} \\ \begin{bmatrix} 1 & i r(\lambda) e^{2\lambda x} \\ 0 & 1 \end{bmatrix} & \lambda \in [-\eta_{2}, -\eta_{1}] =: \Sigma_{2} \end{cases}$$
$$Y(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(\frac{1}{\lambda}\right) & \lambda \to \infty.$$

We recover u(x) as

$$u(x) = 2 \frac{\mathrm{d}}{\mathrm{d}x} \left[\lim_{\lambda \to \infty} \lambda \left(Y_1(\lambda) - 1 \right) \right].$$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	0000000	0000000000	0000
Large positive x 's			

When $x \nearrow +\infty$, we have

$$e^{-2\lambda x} \to 0$$
 on Σ_1 and $e^{2\lambda x} \to 0$ on Σ_2 ,

leaving us with

$$Y_{+}(\lambda; x) = Y_{-}(\lambda; x) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \lambda \in \Sigma_{1} \cup \Sigma_{2}$$
$$Y(\lambda; x) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(\frac{1}{\lambda}\right) \qquad \lambda \to \infty$$

up to exponentially small terms.

Then the solution is clearly

$$Y = \begin{bmatrix} 1 & 1 \end{bmatrix} + \{ \text{small terms} \}$$

and the KdV potential is

$$u(x) = 2 \frac{\mathrm{d}}{\mathrm{d}x} \left[\lim_{\lambda \to \infty} \lambda \left(Y_1 - 1 \right) \right] = 0 + \{ \text{small terms} \} \quad \text{for } x \gg 1.$$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	0000000	0000000000	0000
Large positive x 's			

When $x \nearrow +\infty$, we have

$$e^{-2\lambda x} \to 0$$
 on Σ_1 and $e^{2\lambda x} \to 0$ on Σ_2 ,

leaving us with

$$Y_{+}(\lambda; x) = Y_{-}(\lambda; x) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \lambda \in \Sigma_{1} \cup \Sigma_{2}$$
$$Y(\lambda; x) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(\frac{1}{\lambda}\right) \qquad \lambda \to \infty$$

up to exponentially small terms.

Then the solution is clearly

$$Y = \begin{bmatrix} 1 & 1 \end{bmatrix} + \{\text{small terms}\}$$

and the KdV potential is

$$u(x) = 2\frac{\mathrm{d}}{\mathrm{d}x} \left[\lim_{\lambda \to \infty} \lambda \left(Y_1 - 1 \right) \right] = 0 + \{ \text{small terms} \} \quad \text{for } x \gg 1.$$

Background and motivations	Initial conditions	Large time behaviour	To be continued
000000000000000000000000000000000000	0000000	00000000000	0000

Large negative x's: the Deift–Zhou steepest descent method

On the other hand, when $x \searrow -\infty$, we have

 $e^{\mp 2\lambda x} \to +\infty \quad \text{on } \Sigma_{1/2}.$

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

 $Y \mapsto T \mapsto U \mapsto \ldots \mapsto S$

in such away that, in the regime $x \ll -1$, the final RH problem S can be solved by an approximating solution Ω (the "model problem"):

 $S \sim \Omega$.

Large negative x's: the Deift-Zhou steepest descent method

On the other hand, when $x \searrow -\infty$, we have

 $e^{\mp 2\lambda x} \to +\infty$ on $\Sigma_{1/2}$.

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

 $Y\mapsto T\mapsto U\mapsto \ldots\mapsto S$

in such away that, in the regime $x \ll -1$, the final RH problem S can be solved by an approximating solution Ω (the "model problem"):

 $S \sim \Omega$.

Large negative x's: the Deift–Zhou steepest descent method

On the other hand, when $x \searrow -\infty$, we have

 $e^{\mp 2\lambda x} \to +\infty$ on $\Sigma_{1/2}$.

Steepest Descent Method (Deift-Zhou, '93): the strategy is to perform a sequence of (invertible) transformations of the original RH problem Y

 $Y \mapsto T \mapsto U \mapsto \ldots \mapsto S$

in such away that, in the regime $x \ll -1$, the final RH problem S can be solved by an approximating solution Ω (the "model problem"):

 $S \sim \Omega$.

Background and motivations	Initial conditions		
000000000000000000000000000000000000000	0000000	0000000000	0000

The (matrix) model problem

The global parametrix $P^{(\infty)}$: $P^{(\infty)}_+(\lambda) = P^{(\infty)}_-(\lambda)J_\infty$

with
$$P^{(\infty)}(\lambda) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \mathcal{O}(\lambda^{-1})$$
 as $\lambda \to \infty$.

The construction of the solution relies on the ϑ -function associated to the genus-1 Riemann surface $\mathfrak{X} = \{(\lambda, \eta) \in \mathbb{C}^2 \mid \eta^2 = (\lambda^2 - \eta_1^2)(\lambda^2 - \eta_2^2)\}.$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	00000000000	0000

 $P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda = \pm \eta_2, \pm \eta_1$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{(\pm \eta_j)}$:

Call Ω the "alleged" approximant built out of the global parametrix $P^{(\infty)}$ and the four local parametrices $P^{(\pm \eta_j)}$.

Question: how well does Ω approximate S?

 $S(\lambda) \sim \Omega(\lambda).$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	00000000000	0000

 $P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda = \pm \eta_2, \pm \eta_1$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{(\pm \eta_j)}$:

Call Ω the "alleged" approximant built out of the global parametrix $P^{(\infty)}$ and the four local parametrices $P^{(\pm \eta_j)}$.

Question: how well does Ω approximate S?

 $S(\lambda) \sim \Omega(\lambda).$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	00000000000	0000

 $P^{(\infty)}$ is a good approximation of S everywhere on \mathbb{C} except at the endpoints $\lambda = \pm \eta_2, \pm \eta_1$, where it exhibits a fourth-root singularity, while S is bounded in a neighbourhood of those points.

Four local (matrix) parametrices $P^{(\pm \eta_j)}$:

Call Ω the "alleged" approximant built out of the global parametrix $P^{(\infty)}$ and the four local parametrices $P^{(\pm \eta_j)}$.

Question: how well does Ω approximate S?

 $S(\lambda)\sim \Omega(\lambda).$

Background and motivations	Initial conditions	Large time behaviour 00000000000	To be continued 0000
Small-norm argument			

Consider the ratio

$$R := S\Omega^{-1}.$$

Then,

$$\begin{cases} R_{+}(\lambda) = R_{-}(\lambda) \left(I + \delta V(\lambda)\right) & \text{on the contours, with } \delta V = \mathcal{O}\left(|x|^{-*}\right) \\ R(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(\frac{1}{\lambda}\right) & \lambda \to \infty. \end{cases}$$

It follows that

$$R(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(|x|^{-*}\right),$$

meaning

$$S(\lambda) = R(\lambda)\Omega(\lambda) = \left(\begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(|x|^{-*} \right) \right) \Omega(\lambda)$$

Background and motivations	Initial conditions	Large time behaviour	To be continued

The solution

Theorem (G., Grava, McLaughlin, '18)

In the regime $x \searrow -\infty$, with $\frac{x\Omega + \Delta}{2\pi i} \neq \frac{2n+1}{2}$, $n \in \mathbb{Z}$, the potential u(x) has the following asymptotic behaviour

$$u(x) = \eta_2^2 - \eta_1^2 - 2\eta_2^2 \operatorname{dn}^2 \left(\eta_2(x+\phi) + K(m) \,|\, m\,\right) + \mathcal{O}\left(|x|^{-1}\right)$$

where dn $(z \mid m)$ is the Jacobi elliptic function of modulus $m = \eta_1/\eta_2$, K(m) is the complete elliptic integrals of second kind of modulus m and ϕ is given by

$$\phi = \int_{\eta_1}^{\eta_2} \frac{\log r(\zeta)}{R_+(\zeta)} \frac{\mathrm{d}\zeta}{\pi i} \in \mathbb{R} \ .$$

u(x) is a periodic wave with

• period =
$$\frac{2K(m)}{\eta_2}$$
;

• amplitude = $2\eta_1^2$;

• average value of u(x) over an oscillation:

$$< u(x) >= \eta_2^2 - \eta_1^2 - 2\eta_2^2 \frac{E(m)}{K(m)}$$

	Initial conditions		
00000000000000000000000	00000000	0000000000	0000

The solution

Theorem (G., Grava, McLaughlin, '18)

In the regime $x \searrow -\infty$, with $\frac{x\Omega + \Delta}{2\pi i} \neq \frac{2n+1}{2}$, $n \in \mathbb{Z}$, the potential u(x) has the following asymptotic behaviour

$$u(x) = \eta_2^2 - \eta_1^2 - 2\eta_2^2 \operatorname{dn}^2 \left(\eta_2(x+\phi) + K(m) \,|\, m\,\right) + \mathcal{O}\left(|x|^{-1}\right)$$

where dn(z|m) is the Jacobi elliptic function of modulus $m = \eta_1/\eta_2$, K(m) is the complete elliptic integrals of second kind of modulus m and ϕ is given by

$$\phi = \int_{\eta_1}^{\eta_2} \frac{\log r(\zeta)}{R_+(\zeta)} \frac{\mathrm{d}\zeta}{\pi i} \in \mathbb{R} \ .$$

u(x) is a periodic wave with

- period = $\frac{2K(m)}{\eta_2}$;
- amplitude = $2\eta_1^2$;
- average value of u(x) over an oscillation:

$$< u(x) >= \eta_2^2 - \eta_1^2 - 2\eta_2^2 \frac{E(m)}{K(m)}$$

Background and motivations	Initial conditions		
000000000000000000000000000000000000000	0000000	0000000000	0000

Note:

There is an issue for some values of x: for

$$\frac{x\Omega + \Delta}{2\pi i} = \frac{2n+1}{2}, \quad n \in \mathbb{Z},$$

we cannot build a matrix model problem, therefore the small norm argument cannot be used.

Work in progress...

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	• 00 0000000	0000

Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

I To be continued...

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	0000000000	0000
Switching on time!			

Replace

$$2\lambda x \mapsto 2\lambda x - 8\lambda^3 t$$

in the exponentials (evolution of the reflection coefficient).

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \begin{bmatrix} 1 & 0\\ -ir(\lambda)e^{-2\lambda x + 8\lambda^{3}t} & 1 \end{bmatrix} & \lambda \in \Sigma_{1} \\ \begin{bmatrix} 1 & ir(\lambda)e^{2\lambda x - 8\lambda^{3}t}\\ 0 & 1 \end{bmatrix} & \lambda \in \Sigma_{2} \end{cases}$$
$$Y(\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} + \mathcal{O}\left(\frac{1}{\lambda}\right) \quad \lambda \to \infty.$$

		Large time behaviour	
000000000000000000000000000000000000000	0000000	000000000	0000

$$2\lambda x - 8\lambda^3 t = -8t\lambda \left(\lambda^2 - \frac{x}{4t}\right)$$

shows different sign depending on the value of the quantity

$$\xi := \frac{x}{4t}$$

There are three main domains:

$$u(x,t) = \mathcal{O}\left(t^{-\infty}\right)$$

- $\xi_{crit} < \xi < \eta_2^2$ (super-critical case): u(x, t) is a periodic travelling wave with slowly varying parameters.
- $\xi < \xi_{\text{crit}}$ (sub-critical case): u(x, t) is a periodic travelling wave with fixed parameters.

Background and motivations	Initial conditions 00000000	Large time behaviour	To be continued 0000

$$2\lambda x - 8\lambda^3 t = -8t\lambda \left(\lambda^2 - \frac{x}{4t}\right)$$

shows different sign depending on the value of the quantity

$$\xi := \frac{x}{4t}$$

There are three main domains:

$$u(x,t) = \mathcal{O}\left(t^{-\infty}\right).$$

- $\xi_{crit} < \xi < \eta_2^2$ (super-critical case): u(x, t) is a periodic travelling wave with slowly varying parameters.
- $\xi < \xi_{crit}$ (sub-critical case): u(x,t) is a periodic travelling wave with fixed parameters.

Background and motivations	Initial conditions	Large time behaviour	To be continued 0000

$$2\lambda x - 8\lambda^3 t = -8t\lambda \left(\lambda^2 - \frac{x}{4t}\right)$$

shows different sign depending on the value of the quantity

$$\xi := \frac{x}{4t}$$

There are three main domains:

$$u(x,t) = \mathcal{O}\left(t^{-\infty}\right).$$

- $\xi_{\text{crit}} < \xi < \eta_2^2$ (super-critical case): u(x,t) is a periodic travelling wave with slowly varying parameters.
- $\xi < \xi_{\text{crit}}$ (sub-critical case): u(x,t) is a periodic travelling wave with fixed parameters.

Background and motivations	Initial conditions 00000000	Large time behaviour	To be continued 0000

$$2\lambda x - 8\lambda^3 t = -8t\lambda \left(\lambda^2 - \frac{x}{4t}\right)$$

shows different sign depending on the value of the quantity

$$\xi := \frac{x}{4t}$$

There are three main domains:

$$u(x,t) = \mathcal{O}\left(t^{-\infty}\right).$$

- $\xi_{\text{crit}} < \xi < \eta_2^2$ (super-critical case): u(x, t) is a periodic travelling wave with slowly varying parameters.
- $\xi < \xi_{crit}$ (sub-critical case): u(x,t) is a periodic travelling wave with fixed parameters.

Background and motivations		Large time behaviour	
00000000000000000000000	0000000	0000000000	0000
The super-critical case			

Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

Large time behaviour of the potential u(x, t) The super-critical case

• The sub-critical case

I To be continued...

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	000000000	0000
The super-critical case			
The super-critical case:	α -dependency		

Proposition

Let $\xi < \eta_2^2$. There exists

$$\xi_{\text{crit}} \in \mathbb{R}$$

such that

for each $\xi \in [\xi_{crit}, \eta_2^2]$ there exists a unique $\alpha = \alpha(\xi; \eta_1, \eta_2) \in [\eta_1, \eta_2]$.

We can now proceed with the transformations

$$Y \xrightarrow{g-\text{function}} T \xrightarrow{\text{opening lenses}} S$$

and get to the model problem $\Omega(\lambda)$.

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	000000000	0000
The super-critical case			
The super-critical case:	α -dependency		

Proposition

Let $\xi < \eta_2^2$. There exists

$$\xi_{\text{crit}} \in \mathbb{R}$$

such that

for each $\xi \in [\xi_{crit}, \eta_2^2]$ there exists a unique $\alpha = \alpha(\xi; \eta_1, \eta_2) \in [\eta_1, \eta_2]$.

We can now proceed with the transformations

$$Y \xrightarrow{g-\text{function}} T \xrightarrow{\text{opening lenses}} S$$

and get to the model problem $\Omega(\lambda)$.

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	0000000000	0000
The super-critical case			
The (matrix) model p	oroblem		

The global parametrix $P^{(\infty)}$:

the construction of the solution relies on the ϑ_3 -function associated to the genus-1 Riemann surface $\mathfrak{X}_{\alpha} = \{(\lambda, \eta) \in \mathbb{C}^2 \mid \eta^2 = R_{\alpha}^2(\lambda) = (\lambda^2 - \alpha^2)(\lambda^2 - \eta_2^2)\}.$

Plus four local parametrices $P^{(\pm \eta_2)}$ and $P^{(\pm \alpha)}$:

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	0000000000	0000
The super-critical case			
Back to the potential	u(x,t)		

Theorem (G., Grava, McLaughlin, '18)

Given $\xi = \frac{x}{4t}$, for $\frac{t\tilde{\Omega} + \tilde{\Delta}}{2\pi i} \neq \frac{2n+1}{2}$, $n \in \mathbb{Z}$, in the region $\xi_{\text{crit}} < \xi < \eta_2^2$ the solution of the KdV equation in the large time limit is

$$u(x,t) = \eta_2^2 - \alpha^2 - 2\eta_2^2 \operatorname{dn}^2 \left(\eta_2 (x - 2(\alpha^2 + \eta_2^2)t + \widetilde{\phi}) + K(m_\alpha) \,|\, m_\alpha \right) + \mathcal{O}\left(t^{-1}\right)$$

where $dn(z \mid m)$ is the Jacobi elliptic function of modulus $m_{\alpha} = \frac{\alpha}{\eta_2}$,

$$\widetilde{\phi} = \int_{\alpha}^{\eta_2} \frac{\log r(\zeta)}{R_{\alpha+}(\zeta)} \frac{\mathrm{d}\zeta}{\pi i} \in \mathbb{R}$$

and the parameter $\alpha = \alpha(\xi)$ is determined from the equation

$$\xi = \frac{\eta_2^2}{2} \left[1 + m_{\alpha}^2 + 2 \frac{m_{\alpha}^2 (1 - m_{\alpha}^2)}{1 - m_{\alpha}^2 - \frac{E(m_{\alpha})}{K(m_{\alpha})}} \right]$$

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	000000000000	0000
The sub-critical case			

Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

8 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

To be continued...

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

For $\xi < \xi_{crit}$ the value of α remains always smaller than η_1 .

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Proposition

For $\xi < \xi_{crit}$ the value of α remains always smaller than η_1 .

Background and motivations		Large time behaviour	
000000000000000000000000000000000000000	0000000	00000000000	0000
The sub-critical case			
The sub-critical case			

Recipe:

- Similar construction of the model problem, without the α dependency.
- The local parametrices at the endpoints are four Bessel parametrices.

Background and motivations		Large time behaviour	
00000000000000000000000	0000000	000000000000	0000
The sub-critical case			

Theorem (G., Grava, McLaughlin, '18)

In the regime $t \nearrow +\infty$, $\xi \leq \xi_{\text{crit}}$, $\frac{t\tilde{\Omega}+\tilde{\Delta}}{2\pi i} \neq \frac{2n+1}{2}$, $n \in \mathbb{Z}$, the potential u(x,t) has the following asymptotic expansion

$$\begin{split} u(x,t) &= \eta_2^2 - \eta_1^2 - 2\eta_2^2 \operatorname{dn}^2 \left(\eta_2 (x - 2(\eta_1^2 + \eta_2^2)t + \phi) + K(m) \,|\, m \, \right) + \mathcal{O} \left(t^{-1} \right) \;, \\ \text{where } m &= \eta_1 / \eta_2, \; \text{and} \end{split}$$

$$\phi = \int_{\eta_1}^{\eta_2} \frac{\log r(\zeta)}{R_+(\zeta)} \frac{\mathrm{d}\zeta}{\pi i}$$

Background and motivations		Large time behaviour	
00000000000000000000000	0000000	0000000000	0000
The sub-critical case			

Conclusion: complete description of a (free) soliton gas potential in the large time regime over the whole real line $x \in \mathbb{R}$.

Figure: The asymptotic behaviour of the soliton gas solution. Here t = 10, $\eta_1 = 0.5$ and $\eta_2 = 1.5$ and $r(\lambda) \equiv 1$.

Background and motivations			To be continued
000000000000000000000000000000000000000	0000000	0000000000	0000

D Background and motivations

- KdV and solitons
- The soliton gas and the Riemann–Hilbert problem

2 Asymptotics of the initial condition u(x, 0) for large x's

3 Large time behaviour of the potential u(x,t)

- The super-critical case
- The sub-critical case

4 To be continued...

			To be continued
00000000000000000000000	0000000	0000000000	● 000

Work in progress and future developments

Reflection coefficients:

1. RH problem with two reflection coefficients r_1 and r_2 (Dyachenko, Zakharov, Zakharov, '16):

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \frac{1}{1+r_{1}r_{2}} \begin{bmatrix} 1-r_{1}r_{2} & -ir_{2}e^{2\lambda x} \\ -ir_{1}e^{-2\lambda x} & 1-r_{1}r_{2} \end{bmatrix} & \text{ on } \Sigma_{1} \\ \\ \frac{1}{1+r_{1}r_{2}} \begin{bmatrix} 1-r_{1}r_{2} & ir_{1}e^{2\lambda x} \\ ir_{2}e^{-2\lambda x} & 1-r_{1}r_{2} \end{bmatrix} & \text{ on } \Sigma_{2} \end{cases}$$

2. Multi-band reflection coefficients: the spectral parameter accumulates in two or more disconnected components $\{\Sigma_{1,j} \cup \Sigma_{2,j}\}_{j=1,...,M}$

Background and motivations	Initial conditions	Large time behaviour	To be continued
	00000000	00000000000	•000

Work in progress and future developments

Reflection coefficients:

1. RH problem with two reflection coefficients r_1 and r_2 (Dyachenko, Zakharov, Zakharov, '16):

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \frac{1}{1+r_{1}r_{2}} \begin{bmatrix} 1-r_{1}r_{2} & -ir_{2}e^{2\lambda x} \\ -ir_{1}e^{-2\lambda x} & 1-r_{1}r_{2} \end{bmatrix} & \text{ on } \Sigma_{1} \\ \\ \frac{1}{1+r_{1}r_{2}} \begin{bmatrix} 1-r_{1}r_{2} & ir_{1}e^{2\lambda x} \\ ir_{2}e^{-2\lambda x} & 1-r_{1}r_{2} \end{bmatrix} & \text{ on } \Sigma_{2} \end{cases}$$

2. Multi-band reflection coefficients: the spectral parameter accumulates in two or more disconnected components $\{\Sigma_{1,j} \cup \Sigma_{2,j}\}_{j=1,...,M}$

Background and motivations		To be continued
		0000

Double scaling limit around the critical values of ξ :

1. What happens in a microscopic neighbourhood of η_2^2 ?

 $\begin{array}{rcc} \mbox{trivial solution } Y & \longrightarrow & \mbox{introduction of a g-function} \\ \mbox{vanishing of the potential $u(x,t)$} & \longrightarrow & \mbox{boundedness of the potential $u(x,t)$} \end{array}$

2. What happens in a microscopic neighbourhood of ξ_{crit} ?

Background and motivations		To be continued
		0000

Double scaling limit around the critical values of ξ :

1. What happens in a microscopic neighbourhood of η_2^2 ?

 $\begin{array}{rcc} \mbox{trivial solution } Y & \longrightarrow & \mbox{introduction of a g-function} \\ \mbox{vanishing of the potential $u(x,t)$} & \longrightarrow & \mbox{boundedness of the potential $u(x,t)$} \end{array}$

2. What happens in a microscopic neighbourhood of ξ_{crit} ?

α -dependent sub-intervals	\longrightarrow	full intervals $\Sigma_1 \cup \Sigma_2$
Airy local parametrix	\longrightarrow	Bessel local parametrix

Background and motivations			To be continued
000000000000000000000000000000000000000	0000000	0000000000	0000

Interaction dynamic:

1. Interaction with another soliton? Numerical experiments by G. El et al.

Figure: From Carbone, Dutyk, El, '16.

Background and motivations			To be continued
000000000000000000000000000000000000000	0000000	0000000000	0000

2. Collision with another soliton gas? Numerical experimens by G. El et al.

Figure: From Carbone, Dutyk, El, '16.

Background and motivations			
000000000000000000000000000000000000000	0000000	0000000000	0000

Thank you for your attention!