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Approximation by truncated Fourier series

Let f : [−1/2, 1/2]→ C. Its truncated Fourier series of length M is

fM(x) =
∑

(−M−1)/2≤k≤(M−1)/2

ake
2πikx ,

where

ak =

∫ 1/2

−1/2
f (x)e−2πikxdx .

This is a great way to approximate functions!
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Approximation by truncated Fourier series
In particular, if f (x) is an analytic periodic function, i.e.,
f (−1/2) = f (1/2), then fM(x) converges to f (x) uniformly
exponentially fast in M:

||fM(x)− f (x)||∞ ≤ Ce−cM , c,C > 0.

What to do if:
I f (x) is not analytic?

No big deal. If f ∈ C∞, we still get
super-algebraic convergence.

I f (x) is not periodic? This is a problem. We do not get
uniform convergence at all (Gibbs phemomenon):

Figure: M = 21, 101, 1001.
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Another issue with Fourier approximations
In more general (higher-dimension) case, if Ω ∈ Rd and f : Ω→ C,
the Fourier series seems to only apply when Ω has rather simple
geometry:

One way to deal with it: extend f smoothly to a periodic function
on a larger rectangular domain
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Fourier extensions

It is well known that any smooth function f can be extended
smoothly to a periodic one f̃ on a larger domain (Whitney, 1934).
In fact there are many such extensions.

The simple idea of the Fourier extension (continuation) method is
then to find the truncated Fourier series for f̃ . It converges
super-algebraically fast to f̃ , and f̃ ≡ f on the original (smaller)
domain.

Modern use of this method in numerical analysis:

I Begins with Boyd (2002) and Bruno (2003)

I Applications to PDE’s and imaging: Bruno, Han, Pohlman
(2007); Bruno and Lyon (2009); Bruno and Albin (2011),

I Stability and convergence considerations: Huybrechs (2010);
Adcock and Huybrechs (2014); Adcock, Huybrechs and
Mart́ın-Vaquero (2014)
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How to use the (1d) Fourier extension method
We have f : [−1/2, 1/2]→ C smooth but not periodic. Choose
b > 1, and extend f to f̃ : [−b/2, b/2]→ C where
f̃ (−b/2) = f̃ (b/2). Then use the truncated Fourier series for f̃ .

In practice this means we project f onto the space

Sb
M = {e

2πik
b

x}k∈t(M).

It is natural to project in L2[−1/2, 1/2]. Define

f cM := argmin{||q − f ||L2 : q ∈ Sb
M}

We call f cM the approximation by continuous Fourier extension. It
is very accurate.

Indeed, for all “sufficiently analytic” functions f
(Huybrechs, Adcock 2014),

||f cM − f ||∞ ≤ Ce−cM , c ,C > 0.
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The discrete Fourier extension
Unfortunately, projection in L2 is not always possible because often
in applications f is only known at finitely many points. Suppose f
is only known at the N points x1, . . . , xN given by

xj =
j

N
− 1

2
− 1

2N
, j = 1, 2, . . . ,N.

In order to describe the projection onto Sb
M based on this data,

define the discrete inner product 〈·, ·〉N as

〈f , g〉N :=
1

N

N∑
j=1

f (xj)g(xj),

and let || · ||N be the norm inherited from this inner product. Then
the approximation by discrete Fourier extension is the function
fN ∈ Sb

M given by

fM = argmin{||q − f ||N : q ∈ Sb
M}

The minimizer is unique provided M ≤ N.
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Main questions:

I Can we obtain good function-independent bounds on
||f − fM ||∞?

I Need to sample f at N points with N ≥ M. How many points
are necessary to get good (function-independent)
convergence?

I Need to choose an extended period b > 1. What is a good
choice?
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A formula for fN

To define the projection based on the discrete inner product,
introduce the orthonormal polynomials with respect to 〈·, ·〉N .
That is, ϕN

k (z) be the polynomial of degree k with positive leading
coefficient satisfying

1

N

N∑
j=1

ϕN
k (zj)ϕN

` (zj) = δk`, zj = e2πixj/b.

Then fM is given by

fM(x) = PSb
M

(f )(x) = 〈f (·),KM(·, x)〉N ,

where

KM(x , y) = e2πi
−(M−1)

2b
(x−y)

M−1∑
`=0

ϕN
` (e

2πi
b
x)ϕN

` (e
2πi
b
y ).
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A formula for the error
The error function is

E f ,b
M,N(x) = (1− PSb

M
)(f )(x) = (1− PSb

M
)(f̃ )(x).

Since we assume that f̃ (x) is a smooth function periodic on
[−b/2, b/2], it has Fourier series

f̃ (x) =
∑
k∈Z

ake
2πix/b,

where ak decay faster than any power of k .
Plug in this series for f in the projection formula PSb

M
. It gives

|E f ,b
M,N(x)| ≤

∑
|k|>(M−1)/2

|Bk
N,M(x)||ak |.

where

Bk
N,M(x) := e2πix(k+M0)/b− 1

N

M−1∑
`=0

ϕN
` (e

2πi
b
x)

N∑
j=1

e2πi
k+M0

b
xjϕN

` (e
2πi
b
xj ),

M0 = (M − 1)/2.
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An estimate on |Bk
N,M(x)|

Using the Cauchy–Schwarz inequality along with the
orthonormality of ϕN

` (z), we can obtain the simple upper bound

∣∣∣Bk
N,M(x)

∣∣∣ =

∣∣∣∣∣e 2πi(k+M0)
b

x −
M−1∑
`=0

ϕN
` (e

2πi
b
x)〈e2πi

k+M0
b
·, ϕN

` (e
2πi
b
·)〉N

∣∣∣∣∣
≤ 1 +

M−1∑
l=0

∣∣∣ϕN
l (e

2πi
b
x)
∣∣∣ .

Thus a bound on the orthonormal polynomials gives an upper

bound on
∣∣∣Bk

N,M(x)
∣∣∣.



Asymtotics of the OP’s near the middle
Define the number β ∈ (0, 12) via the equation

cos
2πβ

b
= cos(π/b) + (1 + cos(π/b)) tan

(
πM

2Nb

)2

.

Theorem
Let N and M approach infinity in such a way that the ratio
N/M ≥ 1 remains bounded. Also fix b > 1 and fix x such that

|x | < β. Then the orthonormal polynomial ϕN
M(e

2πi
b
x) satisfies

ϕN
M(e

2πi
b
x) = O(1),

as M →∞. Thus the error term Bk
N,M(x) satisfies

|Bk
N,M(x)| = O(M).

These estimates are uniform in x on compact subsets of the
interval (−β, β).
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Asymtotics of the OP’s near the edges

Theorem
Let N and M approach infinity in such a way that the ratio
N/M = ξ ≥ 1 is bounded. Also fix b > 1 and fix x such that

β < x < 1/2. Then the orthonormal polynomial ϕN
M(e

2πi
b
x)

satisfies

ϕN
M(e±

2πi
b
x) = eM(L(x)−L(β))

[
F (x) sin (πNx)+O(e−cM)

][
1+O(M−1)

]
,

where F (x) is a (complex) bounded analytic function of x and
c > 0. The error terms are uniform on compact subsets of (β, 12).
Here L(x) is increasing on (β, 1/2).

This indicates that |Bk
N,M(x)| might become exponentially large

between sample points.
But does it really?
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A more precise estimate on Bk
N,M

Bk
N,M(x) is written in terms of the Christoffell–Darboux kernel as

Bk
N,M(x) = e2πix(k+M0)/b − 1

N
e2πiM0x/b

N∑
j=1

KM(x , xj)e
2πikxj/b.

Theorem
Fix ` ∈ Z+, and let k = M+1

2 + `, assuming M is odd. For large
enough M, there are c` > 0 and d` > 0 independent of M such
that

c`M
`eML(β)|ϕN

M(e
2πi
b
x)| ≤ |Bk

N,M(x)| ≤ d`M
`eML(β)|ϕN

M(e
2πi
b
x)|.
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Properties of L̃(x)

Call the sampling density N/M := ξ. Then L(x) ≡ L(x ; b, ξ)
satisfies the following properties.

I For fixed b ≥ 1 and ξ ≥ 1, the function L(x) is constant for
x ∈ [−β, β], strictly increasing for x ∈ [β, 1/2], and decreasing
for x ∈ [−1/2,−β].

I For fixed x and b, L(x ; b, ξ) is a decreasing function of ξ > 1.

I For any b > 2, L(x ; b, ξ) < 0 for all ξ ≥ 1 and
x ∈ [−1/2, 1/2].

I For any 1 < b ≤ 2, there exists a sampling density ξb such
that for any ξ > ξb, the function L(x ; b, ξ) is negative for all
x ∈ [−1/2, 1/2]. Conversely, for each 1 ≤ ξ < ξb, there exists
xξ ∈ (0, 1/2) such that L(x ; b, ξ) is positive for all
x ∈ [−1/2,−xξ) ∪ (xξ, 1/2].



Earlier theorem was

Theorem
Fix ` ∈ Z+, and let k = M+1

2 + `, assuming M is odd. For large
enough M, there are c` > 0 and d` > 0 independent of M such
that

c`M
`eML(β)|ϕN

M(e
2πi
b
x)| ≤ |Bk

N,M(x)| ≤ d`M
`eML(β)|ϕN

M(e
2πi
b
x)|.

It implies that for each b ∈ (1, 2], if ξ < ξb then |Bk
N,M(x)| is

exponentially increasing in M for x in a set of positive measure
near the end-points of the interval [−1/2, 1/2].

I would bet some money that

ξb ≡
1

b − 1
,

but I haven’t been able to prove it.
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An idea of what’s going on with these OP’s
In the variable z = e2πix/b the orthogonal polynomial ϕN

M(z) may
be written as the multiple sum (Heine’s formula)

ϕN
M(z) =

1

DM,N

∑
x1,...xM∈LN

M∏
j=1

(z−e2πixj/b)
∏

1≤j<k≤M
|e2πixk/b − e2πixj/b|2,

where LN is the set of sample points.

Write it as

1

DM,N

N∑
x1,...,xM=1

exp

[
M

∫
log(z − e2πiy/b)dνx(y)

]
exp

[
−M2H(νx)

]
,

where

H(ν) =

∫∫
x 6=y

log
1

|e2πix/b − e2πiy/b|
dν(x)dν(y), νx =

1

M

M∑
j=1

δxj .
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Since there is a factor M2 in the exponent, we expect the primary
contribution in this integral as M →∞ to come from a minimizer
of the functional H(ν). We minimize over all Borel measures ν on
[−1/2, 1/2] satisfying the following two properties:

1. The measure ν is a probability measure, i.e.
∫ 1/2
−1/2 dν(x) = 1.

2. The measure ν does not exceed the limiting density of nodes
x1, . . . , xN as N,M →∞. That is, 0 ≤ ν ≤ σξ, where σ is
the Lebesgue measure and ξ := N

M .

Call the minimizer νeq.

Then heuristically that for large M,

ϕN
M(z) ∼ e−M

2E0

DM,N
exp

(
M

∫ 1/2

−1/2
log(z − e2πiy/b)dνeq(y)

)
,

where E0 := H(νeq).



Since there is a factor M2 in the exponent, we expect the primary
contribution in this integral as M →∞ to come from a minimizer
of the functional H(ν). We minimize over all Borel measures ν on
[−1/2, 1/2] satisfying the following two properties:

1. The measure ν is a probability measure, i.e.
∫ 1/2
−1/2 dν(x) = 1.

2. The measure ν does not exceed the limiting density of nodes
x1, . . . , xN as N,M →∞. That is, 0 ≤ ν ≤ σξ, where σ is
the Lebesgue measure and ξ := N

M .

Call the minimizer νeq.

Then heuristically that for large M,

ϕN
M(z) ∼ e−M

2E0

DM,N
exp

(
M

∫ 1/2

−1/2
log(z − e2πiy/b)dνeq(y)

)
,

where E0 := H(νeq).



The equilibrium measure is uniquely determined by the
Euler–Lagrange variational conditions: there exists a Lagrange
multiplier ` such that

2

∫
log |e2πix/b−e2πiy/b|dνeq(y)

{
≥ ` for x ∈ supp νeq

≤ ` for x ∈ supp (ξσ − νeq).

If 2
∫

log |e2πix/b − e2πiy/b|dνeq(y) = ` then

ϕN
M(e2πix/b) ∼ e−M

2E0+M`/2

DM,N
,

and a similar heuristic shows that

DM,N ∼ eM
2E0−M`/2,

so ϕN
M(e2πix/b) = O(1) whenever

2
∫

log |e2πix/b − e2πiy/b|dνeq(y) = `.

It turns out this is the interval (−β, β)
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On the other hand, if

2

∫
log |e2πix/b − e2πiy/b|dνeq(y) > `,

then
ϕN
M(e2πix/b) ∼ eM(L(x)−`/2),

L(x) =

∫ 1/2

−1/2
log |e2πix/b − e2πiy/b| dνeq(y) > `/2.

This is the case for |x | > β. Since 〈ϕN
M , ϕ

N
M〉 = 1, it implies

|ϕN
M(e2πixj/b)| oscillates very regularly in the saturated region,

nearly vanishing at each node of LN , and then growing
exponentially large between nodes.

In the language of discrete orthogonal polynomials this is called a
saturated region.
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How to get rid of that pesky saturated region

If you have the freedom to sample points with a non-constant
density (not equally spaced) you should do it! See papers of
Adcock et al.

Suppose the N sample points are taken such that the counting
measure 1

N

∑N
j=1 δxj converges weakly to some density %(x) as

N →∞. Then the upper constraint on the equilibrium measure is
ξ%(x) instead of the constant ξ.
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How to get rid of that pesky saturated region
How to choose %? Solve the unconstrained equilibrium problem
(just minimize over probability measures). The solution is

dνceq(x) =

√
2 cos(πx/b)

b
√

cos(2πx/b)− cos(π/b)
dx .

If you choose %(x) at least as big as this density, there will be no
saturated region, and the orthogonal polynomials will be O(1) as
M →∞.
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Summary

When implementing the Fourier extension approximation, one must
choose a sampling density as well as an extended period b > 1.
From the point of view of orthogonal polynomial theory, our advice
is

I If possible, choose the sample points according to the
unconstrained equilibrium measure on previous slide.

I If you are stuck with equi-spaced sampling taking b > 2 will
improve some terms in the error.

I If you must take 1 < b < 2 take the sampling density
ξ = N/M to be bigger than 1/(b − 1). This likewise will
improve some terms in the error (close to the endpoints).



Summary

When implementing the Fourier extension approximation, one must
choose a sampling density as well as an extended period b > 1.
From the point of view of orthogonal polynomial theory, our advice
is

I If possible, choose the sample points according to the
unconstrained equilibrium measure on previous slide.

I If you are stuck with equi-spaced sampling taking b > 2 will
improve some terms in the error.

I If you must take 1 < b < 2 take the sampling density
ξ = N/M to be bigger than 1/(b − 1). This likewise will
improve some terms in the error (close to the endpoints).



Summary

When implementing the Fourier extension approximation, one must
choose a sampling density as well as an extended period b > 1.
From the point of view of orthogonal polynomial theory, our advice
is

I If possible, choose the sample points according to the
unconstrained equilibrium measure on previous slide.

I If you are stuck with equi-spaced sampling taking b > 2 will
improve some terms in the error.

I If you must take 1 < b < 2 take the sampling density
ξ = N/M to be bigger than 1/(b − 1). This likewise will
improve some terms in the error (close to the endpoints).



Thanks

Thank you much!


