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Composition Operators on Banach space

Let D := {z ∈ C : |z| < 1}. Let H be a Hilbert space of analytic functions on D.

Composition operator

For φ : D −→ D be analytic. Then, the composition operator on H defined by

Cφ : H −→ H
f 7−→ f ◦ φ

is bounded.

There is a profusion of results on the composition operator when H = Hp where Hp is defined by

Hp :=

{
f : D −→ C analytic : ‖f ‖Hp := sup

0<r<1

(
1

2π

∫ 2π

0
|f (re it)|pdt

)1/p

<∞
}
,

and when H = Ap where

Ap :=

{
f : D −→ C analytic : ‖f ‖Ap :=

(
1

π

∫
D
|f (z)|pdA(z)

)1/p

<∞
}
.

Question: What can be said about the composition operator on Hardy spaces on more general
domains?
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Hp-spaces

Existence of a trace for Hp-functions

Let f ∈ Hp . Then, f has an Lp-extension to ∂D = T defined by

tr f = lim
r→1

f (re it) exists a.e. on T

with tr f ∈ Lp(T).

Norm on Hp

Let f ∈ Hp . Then, tr f ∈ Hp(T) := {g ∈ Lp(T) : ĝ(n) = 0, n < 0} and

‖f ‖Hp = ‖tr f ‖Lp .

We identify f ∈ Hp to its trace tr f .

Extension to Hp :

f (re iθ) =
1

2π

∫ 2π

0
P(r , θ − t)g(e it)dt, P(r , θ − t) =

1− r2

1− 2r cos(θ − t) + r2
,

with g(e it) = tr f (e it) a.e..
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‖f ‖Hp = ‖tr f ‖Lp .

We identify f ∈ Hp to its trace tr f .

Extension to Hp :

f (re iθ) =
1

2π

∫ 2π

0
P(r , θ − t)g(e it)dt, P(r , θ − t) =

1− r2

1− 2r cos(θ − t) + r2
,

with g(e it) = tr f (e it) a.e..

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 6 / 21



Hp-spaces

Existence of a trace for Hp-functions

Let f ∈ Hp . Then, f has an Lp-extension to ∂D = T defined by

tr f = lim
r→1

f (re it) exists a.e. on T

with tr f ∈ Lp(T).

Norm on Hp

Let f ∈ Hp . Then, tr f ∈ Hp(T) := {g ∈ Lp(T) : ĝ(n) = 0, n < 0} and
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‖f ‖Hp = ‖tr f ‖Lp .

We identify f ∈ Hp to its trace tr f .

Extension to Hp :

f (re iθ) =
1

2π

∫ 2π

0
P(r , θ − t)g(e it)dt, P(r , θ − t) =

1− r2

1− 2r cos(θ − t) + r2
,

with g(e it) = tr f (e it) a.e..

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 6 / 21



Hp-spaces

Existence of a trace for Hp-functions

Let f ∈ Hp . Then, f has an Lp-extension to ∂D = T defined by

tr f = lim
r→1

f (re it) exists a.e. on T

with tr f ∈ Lp(T).

Norm on Hp

Let f ∈ Hp . Then, tr f ∈ Hp(T) := {g ∈ Lp(T) : ĝ(n) = 0, n < 0} and
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Another definition of Hp-spaces

Define the space

X := {f : D −→ C analytic : there is a harmonic majorant u of |f |p},

equipped with ‖f ‖p = (uf (0))1/p where uf is the least harmonic majorant of |f |p .

The space X coincides with Hp and the norms are equivalent. The space X is conformally
invariant.

Subharmonic functions have the following property:

Littlewood Subordination Theorem

For φ : D −→ D analytic with φ(0) = 0 and G a subharmonic function in D, for 0 < r < 1,∫ 2π

0
G(φ(re iθ))dθ ≤

∫ 2π

0
G(re iθ)dθ.

Application: Littlewood Subordination Theorem +Hp definition i.e. via subharmonic
majorant=boundedness of some composition operators Cφ with φ(0) = 0.
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Norm on H2 and Area integral

Littlewood-Paley type Identity

Let f ∈ H2. Then,

1

2
‖f − f (0)‖2

H2 ≤
∫
D
|f ′(z)|2(1− |z|2)dA(z) ≤ ‖f − f (0)‖2

H2 , (1)

In particular,

1

2π

∫ 2π

0
|f (e it)|2dt ' |f (0)|2 +

∫
D
|f ′(z)|2(1− |z|2)dA(z). (2)

The Littlewood-Paley type Identity revisits the boundedness of Cφ for φ univalent:

‖Cφ(f )‖H2 ≤ 3‖f ‖H2 .
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Hardy spaces on domains Ω

It is possible to define the Hardy spaces on a simply-connected domain Ω ⊂ C depending on the
regularity of the boundary ∂Ω.

The definition relies on the boundary behavior of the conformal map τ : D −→ Ω.

Boundary behavior of the conformal map τ

It is possible to classify the boundary behavior in two classes:

1) There are a, b > 0 such that a < |τ ′(z)| < b for z ∈ D;

2) |τ ′| is not bounded below or not bounded above;

Domains such that |τ ′(z)| < b have a rectifiable boundary in the sense:

Λ(∂Ω) =
1

2π

∫ 2π

0
|τ ′(e iθ)|dθ <∞,

where Λ is the 1-Hausdorff measure restricted to the boundary ∂Ω.
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Hardy spaces on domains Ω
Example for 1):

 

Dot

A Dini-smooth domain

Example for 2):

Bounded domain with a cusp; Unbounded domain: the upper half-plane
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Hardy spaces on domains Ω

Case of a < |τ ′| < b

The space of analytic functions F : Ω −→ C such that

sup
0<r<1

∫
Γr

|F (w)|p |dw | <∞,

where Γr = τ(rT) coincides with Cτ−1 (Hp) and thus coincides with the space of functions F on
Ω such that |F |p has a harmonic majorant on Ω.

Case of |τ ′| not bounded above nor below

The space of analytic functions F : Ω −→ C such that

‖F‖pEp := sup
0<r<1

∫
Γr

|F (w)|p |dw | <∞,

where Γr = τ(rT) is the Ep(Ω) space and

F ∈ Ep(Ω) =⇒ (F ◦ τ) · τ ′ ∈ Hp .
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Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Ep(Ω) spaces

Among the family of domains for which |τ ′| is not bounded above or below:

Rectifiable vs non rectifiable domain

A simply-connected domain Ω is rectifiable if Λ(∂Ω) <∞ which is equivalent to

τ ′ ∈ H1.

Examples. • τ ′ ∈ H1: bounded chord-arc domains (Lavrentiev domains) which are domains for
which the boundary ∂Ω satisifes

Λ(∂Ω(a, b)) ≤ M|a− b|,

where ∂Ω(a, b) is the shorter arc of ∂Ω between a and b. Squares are bounded chord-arc domains.

• τ ′ 6∈ H1: the upper half-plane C+ := {z ∈ C : Im(z) > 0} is an unbounded chord-arc domain;

the strip S = {z ∈ C : −1 < Im(z) < 1} is not a chord-arc domain.

Elodie Pozzi Midwestern Workshop on Asymptotic Analysis October 14 2023 MWAA 12 / 21



Hardy spaces on domains Ω

Assume that τ ′ ∈ H1.

Boundary value of F ∈ E p(Ω)

A function F ∈ Ep(Ω) has a trace on ∂Ω and trF ∈ Lp(∂Ω).

For F ∈ Ep(Ω), ‖F‖Ep(Ω) ' ‖trF‖Lp(∂Ω).

The existence of a trace to the boundary relies on the existence of a trace for τ ′.
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Ep(Ω) spaces

Assume that Ω is an unbounded chord-arc domain.

Littlewood-Paley type Identity (Jerison-Kenig 1982)

Let F ∈ E2(Ω). Then, ∫
∂Ω
|f (z)|2|dz| '

∫∫
Ω
|F ′(w)|2δΩ(w)dA(w), (3)

with constants depending only on the chord-arc constant.

Assume that Ω is a bounded chord-arc domain with 0 ∈ Ω and δ∂Ω(0) ' diam(Ω) = 1 where
δΩ(0) denotes the distance between 0 and ∂Ω and diam(Ω) is the diameter.

Littlewood-Paley type Identity (Bishop-Jones 1992)

Let F ∈ E2(Ω). Then,∫
∂Ω
|f (z)|2|dz| ' |F (0)|2 +

∫∫
Ω
|F ′(w)|2δΩ(w)dA(w). (4)

with constants depending only on the chord-arc constant.
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Ep(Ω) spaces

Assume that Ω is a bounded chord-arc domain.

Littlewood-Paley type Identity (Choe-Koo-P-Smith 2023)

Let F ∈ E2(Ω) and z0 be such that δΩ(z0) ≥ 1
2

supz∈Ω δΩ(z). Then,∫
∂Ω
|f (z)|2|dz| ' δΩ(z0)|F (z0)|2 +

∫∫
Ω
|F ′(w)|2δΩ(w)dA(w), (5)

with constants depending only on the chord-arc constant.

Littlewood-Paley type Identity (Choe-Koo-P-Smith 2023)

Let F ∈ E2(Ω), z0 be such that δΩ(z0) ≥ 1
2

supz∈Ω δΩ(z) and Γz0 be a geodesic in Ω passing
through z0. Then,∫

∂Ω
|f (z)|2|dz| '

∫
Γz0

|F (z)|2|dz|+
∫∫

Ω
|F ′(w)|2δΩ(w)dA(w), (6)

with constants depending only on the chord-arc constant.

The same is valid if Ω is an unbounded chord-arc domain with any geodesic instead of the
geodesic Γz0 .
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Ep(Ω) spaces for Ω Carleson domain

A measure µ on Ω is a Carleson measure if

‖µ‖ := sup
z∈∂Ω
r>0

1

r
|µ|(D(z, r)) <∞,

and ∆(Ω) denotes the set of Carleson measures on Ω.

Carleson domain

A Carleson domain Ω is a simply-connected domain (bounded or unbounded) for which there
exists C > 0 such that for µ ∈ ∆(Ω),∫∫

Ω
|f (z)||dµ(z)| ≤ C‖µ‖‖f ‖1, f ∈ E1(Ω), (7)

(defined by Zinsmeister, Les Domaines de Carleson, 1985).
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Ep(Ω) spaces for Ω Carleson domain

Characterization of Carleson domains (Zinsmeister, 1985)

Ω is a Carleson domain if and only if log τ ′ ∈ BMOA(D) where BMOA(D) is the space of analytic
functions b on D such that b ∈ BMO(T).

Examples: any chord-arc domain (bounded or unbounded) is a Carleson domain.

The strip S = {z ∈ C : −1 < Im(z) < 1} is a Carleson domain but is not a chord-arc domain.

An example of a Carleson domain but not a chord-arc domain is a domain with a long cusp.
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Littlewood-Paley type identity for the strip

Littlewood-Paley type identity for the strip (Choe-Koo-P-Smith 2023)

Let F ∈ E2(S). Then,∫
∂S
|f (z)|2|dz| '

∫
R
|F (x)|2dx +

∫∫
S
|F ′(w)|2δS (w)dA(w). (8)

Key ingredients: • The strip can be decomposed into a union of bounded chord-arc domains with
chord-arc constant 1.

• The strip is a Carleson domain.

Consequence

The Littlewood-Paley type identity can be obtained for Carleson domains that can be
decomposed into a union of bounded chord-arc domains with the same chord-arc constant.
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Reproducing kernel and Composition Operator

For b ∈ Ω, the evaluation map F 7−→ F (b) is bounded on E2(Ω) which gives the existence of
Kb ∈ E2(Ω) such that

F (b) =

∫
∂Ω

F (z)Kb(z)|dz|.

Reproducing kernel

Let g = τ−1.

Kb(w) =
(g ′(b)g ′(w))1/2

1− g(b)g(w)
b,w ∈ Ω.

with

‖Kb‖2
E2(Ω)

= 〈Kb,Kb〉 =
|g ′(b)|

1− |g(b)|2
≈

1

δΩ(b)
.

The reproducing kernel Kb behaves in the following way under C∗φ : for b ∈ Ω,

C∗φ(Kb) = Kφ(b).
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Reproducing Kernel Thesis

Reproducing Kernel Thesis (Choe-Koo-P-Smith 2023)

Let Ω be a Carleson domain and let φ be an analytic self-map of Ω. Then Cφ is bounded on
E2(Ω) if and only if

sup
b∈Ω
‖Kb‖−2

E2(Ω)
‖CφKb‖2

E2(Ω)
<∞. (9)

But C∗φ does not necessarily satisfy the Reproducing Kernel Thesis on any Carleson domain.

Let S = {z ∈ C : −1 < Im(z) < 1} and φ : S −→ S be defined as φ(z) = 0. Then, C∗φ is not

bounded but

sup
b∈Ω
‖Kb‖−2

E2(Ω)
‖C∗φKb‖2

E2(Ω)
<∞. (10)
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Thank You!
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