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splines

C r (smooth) piecewise polynomials of degree ≤ d over (simplicial)
partitions ∆ in Rn are called SPLINES. It is a vector space S r

d(∆).

From “BIVARIATE SEMIALGEBRAIC SPLINES” by MICHAEL
DIPASQUALE AND FRANK SOTTILE
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splines on triangulations

A set ∆ = {T1, . . . ,TN} of triangles in the plane is called a triangulation
of Ω =

⋃N
i=1 Ti provided that

1 If a pair of triangles in ∆ intersect, then that intersection is either a
common vertex or a common edge.

2 The domain Ω is homeomorphic to a disk.

S r
d(∆) = {s ∈ C r (Ω) : s

∣∣
Ti

∈ Pd , i = 1, . . . ,N}

where Pd is now the
(d+2

2

)
-dimensional space of polynomials of

degree d in two variables.
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why do we use splines

approximation theory: given some information I (f ) about a function f
from a certain class, build a spline s(f ) which is sufficiently close to f in a
certain norm.

numerical PDEs: given a PDE and some boundary conditions, build a
spline s which is sufficiently close to the solution of the PDE in a certain
norm.

interpolation: I (f ) = I (s), values, derivatives at faces of ∆

approximation: ∥f − s(f )∥ ≤ K |∆|m∥f ∥, ∆ is the “mesh size” of ∆

Tatyana Sorokina (Towson University) Multivariate Splines MWAA 2023, Indianapolis 4 / 32



why do we use splines

approximation theory: given some information I (f ) about a function f
from a certain class, build a spline s(f ) which is sufficiently close to f in a
certain norm.

numerical PDEs: given a PDE and some boundary conditions, build a
spline s which is sufficiently close to the solution of the PDE in a certain
norm.

interpolation: I (f ) = I (s), values, derivatives at faces of ∆

approximation: ∥f − s(f )∥ ≤ K |∆|m∥f ∥, ∆ is the “mesh size” of ∆

Tatyana Sorokina (Towson University) Multivariate Splines MWAA 2023, Indianapolis 4 / 32



everything about splines except what is in this talk
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... collaborators

Boris Shekhtman
University of South Florida
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univariate splines: dimension count

v0 v1

∆0 = [v0, v1]

a0 + a1x + a2x
2

dim S1
2 (∆0) = 3

v0 v1 v2

∆1 = [v0, v1] ∪ [v1, v2]

dim S1
2 (∆1) =

= 3 + 3− 2 = 4

dimS1
2 (∆n) = # parameters - # conditions =

= 3(n + 1)− 2n = n + 3
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bivariate splines: dimension count

∑
i+j≤2 aijx

iy j

dim S1
2 (∆0) = 6

dim S1
2 (∆1) =

6 + 6− (3 + 2) = 7

dim S1
2 (∆2) = 6∑

i+j≤2 aijx
iy j
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first example of supersmoothness: Clough-Tocher split

v
S1
d (∆CT ) = S1

d (∆CT ) ∩ C 2(v)

S1
d (∆CT ) has instrinsic supes-

moothness two at v
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a non-mathematical analogy

If one picture is worth a thousand words, then two should suffice to explain
the statement of a research problem. Imagine three triangular pieces of
your favorite material being joined together along three edges. How
smoothly do the pieces fit together? Let us use the scale from zero to five,
where zero is not very smooth, and five means the fit is so smooth that we
cannot see any edges at all. The blue ”stitching” has shaded width one,
i.e., the joint on the left has smoothness one according to our scale.
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a non-mathematical analogy: supersmoothness

We now state the unexplainable: the joint has higher smoothness at the
center where all three edges meet. If we use our scale, this
”supersmoothness” is two at the center, see the wider yellow shaded
”stitching” at the center.
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a non-mathematical analogy: supersmoothness

It becomes more intriguing: if we use four pieces instead of three (imagine
a square instead of a triangle), there is no additional smoothness at the
center.
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supersmoothness of splines on cells

Splits of triangles, squares and other polygons using one interior point
are called bivariate cells. Splits of prisms, cubes and other solids using
one interior point are called trivariate cells. More difficult to imagine
and more important in applications are cells in higher dimensions.

Suppose ∆ is a simplicial partition consisting of a set of simplices
which all share one common interior vertex. Then we call ∆ a cell.

Is supersmoothness at the center of the cell an algebraic (polynomial)
or an analytic (smooth functions) property?

Farin’s and Alfeld’s proofs (1972 and 1983) were essentially analitic.

However, the correct answer is ... both !
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supersmoothness of bivariate splines on cells

Theorem (T.S. 2010)

Let ∆ be a cell with n noncollinear edges. Then

S r
d(∆) = S r

d(∆) ∩ C ρ(v), where ρ = r +
⌊ r + 1

n − 1

⌋
.

Example 1. n = 3, r = 1, d = 6, ρ = 2 and S1
6 (∆) = S1

6 (∆) ∩ C 2(v)

Example 2. n = 3, r = 3, d = 6, ρ = 5 and S3
6 (∆) = S3

6 (∆) ∩ C 5(v)

There is a big difference between Ex. 1 and Ex. 2: compare r and ρ!
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supersmoothness of bivariate splines on cells: true C r ?

Theorem (T.S. 2010)

Let ∆ be a cell with n noncollinear edges. Then

S r
d(∆) = S r

d(∆) ∩ C ρ(v), where ρ = r +
⌊ r + 1

n − 1

⌋
,

where C ρ(v) is understood as matching of the derivatives up to order ρ at
the point v if r + 2 ≤ ρ < d .

Ex 1. n = 3, r = 1, d = 6, ρ = 2 and S1
6 (∆) = S1

6 (∆) ∩ C 2(v). True C 2

at v . Analytic proof is possible.

Ex. 2. n = 3, r = 3, d = 6, ρ = 5 and S3
6 (∆) = S3

6 (∆) ∩ C 5(v).
Matching of the derivatives at v . Only algebraic proof is possible.
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supersmoothness at singular point

Theorem (T.S., B. Shekhtman 2012)

Let γ ⊂ R2 be the trace of a Jordan arc that divides the open disk Ω into
two subsets Ω1 and Ω2. Let γ be not smooth at P ∈ γ. Let f1, f2 be C 1

functions on Ω continuously glued along γ, that is, let

F (x , y) :=

{
f1(x , y) if (x , y) ∈ Ω1,
f2(x , y) if (x , y) ∈ Ω2,

be a continuous function on Ω. Then the piecewise function F is
differentiable at P, that is, ∇f1(P) = ∇f2(P).

&%
'$

��Ω1

Ω2

γ

Figure: dim S1
2 (∆1) = 6
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local characterization of non-smooth curves

Theorem (T.S., B. Shekhtman 2012)

The trace of a Jordan arc γ is smooth at P if and only if there exists a
neighborhood U of P and a function h continuously differentiable on U
such that

h(x , y) = 0 if (x , y) ∈ γ ∩ U, and ∇h(P) ̸= 0.
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proof of a special case

Let p1(x , y) and p2(x , y) be polynomials, and let

s(x , y) :=

{
p1(x , y) if (x , y) ∈ Ω1

p2(x , y) if (x , y) ∈ Ω2

be a continuous function on Ω.

Ω1

Ω2

p1(x , y) = a00 + a110x + a101y + · · ·

p2(x , y) = a00 + a210x + a201y + · · ·

p1(0, y) = p2(0, y) ⇒ a101 = a201

p1(x , 0) = p2(x , 0) ⇒ a110 = a210

∇p1(0, 0) = ∇p2(0, 0).
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supersmoothness across edges

Theorem

Let ∆ be a cell, and let smoothness r ≥ 1. Suppose the number of
different slopes m ≤ r + 2. Let ∆̃ be the cell obtained from ∆ by
removing the edges with no collinear counterparts. Then

S r
r+1(∆) = S r

r+1(∆̃).

Example: r = 3. Three black edge can be removed. Alfeld’s applet.
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mixed derivatives

Theorem (T.S. 2012)

Let ∆ be a cell with no non-collinear and 2ℓ collinear edges meeting at v .
Then for any s ∈ Sℓ−1

d (∆) any ℓ-th order mixed derivative

∂ℓs

∂ui1 · · · ∂uiℓ
(v),

where ui1 , . . . , uiℓ are pairwise distinct directions of non-collinear edges,
exists.

v s ∈ S1
d (∆), ℓ = 2

∂2s

∂x∂y
(v) exists
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a non-mathematical analogy: supersmoothness

It becomes more intriguing: if we use four pieces instead of three (imagine
a square instead of a triangle), there is no additional smoothness at the
center, but the mixed derivatives match!
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an exotic type of supersmoothness

Theorem (T.S. 2012)

Let △ be a cell with four non-collinear edges meeting at the point v .
Then there exists a unique straight line passing through v with the
property that for any smooth quadratic spline s on △, the restriction of s
on this line is a univariate quadratic polynomial.
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semialgebraic splines

From “BIVARIATE SEMIALGEBRAIC SPLINES” by MICHAEL
DIPASQUALE AND FRANK SOTTILE
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supersmoothness of semialgebraic splines

Let ∆ be a cell complex with one interior vertex
defined by irreducible algebraic arcs {τi}mi=0

r r
σm

σ0

σi−1

τi

τm

τ0r

r r r

τ1

τi−1
r
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supersmoothness of semialgebraic splines

Theorem (T.S, B. Shekhtman, 2022)

Let {τij}nj=0, 1 ≤ n ≤ m, be the edges of ∆ defined by the polynomials
{gij}nj=0 with non-zero gradients at the origin. If {∇gij (0, 0)}nj=0 are

pairwise linearly independent, then every s ∈ Sn−1
d (∆) has

supersmoothness n at the origin. If n = 0, or if all edges in ∆ are defined
by polynomials with zero gradients, then every s ∈ S0

d (∆) has
supersmoothness 1 at the origin.

Tatyana Sorokina (Towson University) Multivariate Splines MWAA 2023, Indianapolis 25 / 32



why study supersmoothness

Choice of suitable triangulations.

Dimension of bivariate splines on arbitrary triangulations is a hard
open problem. Knowing intrinsic supersmoothness provides sharper
lower bounds.

Intrinsic supersmoothness directly affects interpolating properties:
restricts the choices of interpolating sets.

Numerical PDEs: prediction of (usually undesirable) extra smoothness
of corner finite elements.

Intrinsic supersmoothness might affects local convergence order.
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historical developments

G. Farin, Bézier polynomials over triangles; Report TR/91, Dept. of
Mathematics, Brunel University, Uxbridge, UK, 1980

P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data,
Computer Aided Geometric Design 1, 1984 169–181

T. Sorokina, Intrinsic supersmoothness of multivariate splines,
Numerische Mathematik, 116, 2010, 421–434

After 2010:

Analytic: B. Shekhtman, M. Floater, K. Hu, T. Sorokina

Algebraic: M. DiPasquale, N.Villamizar, B. Yuan, T. Sorokina,
D. Toshniwal, H. Schenck
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key references and thank you for listening!
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of bivariate semialgebraic splines, Computer Aided Geometric Design,
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Shekhtman B., and T. Sorokina,A, Intrinsic Supersmoothness,
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Numerische Mathematik, 2010

Tatyana Sorokina (Towson University) Multivariate Splines MWAA 2023, Indianapolis 28 / 32



the most famous conjecture

S1
3 (∆) smooth cubic splines in two variables on a triangulation ∆

VB number of boundary vertices in ∆

VI number of interior vertices in ∆

σsing number of vertices where four edges meet with two slopes

dim S1
3 (∆) = 3VB + 2VI + 1 + σsing
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known results on dim

If ∆2 is shellable, then dim S r
d(∆2) is bounded above by(

d + 2

2

)
+ EI

(
d + 1− r

2

)
− VI

[(
d + 2

2

)
−
(
r + 2

2

)]
+

∑
v∈VI

σv ,

where EI is the number of interior edges, VI is the number of interior
vertices, VI is the set of interior vertices of ∆2, and

σv :=
d−r∑
j=1

(r + j + 1− jmv )+, mv := number of different slopes at v

If d ≥ 3r + 1, the upper bound = dim

Not much is known for d ≤ 3r
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collaborators on Linear Differential Operators on Splines

Peter Alfeld Shangyou Zhang
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