
On the Variance of the Number of Roots of Complex Random
Orthogonal Polynomials Spanned by OPUC†

Aaron Michael Yeager
Oklahoma State University, Stillwater, Oklahoma
† The presented work is a preliminary report

Problem Statement

We study zeros of random orthogonal polynomials

Pn(z) =
n∑
j=0

ηjϕj(z), z ∈ C,

where n is a fixed integer, {ηj} are complex-valued random variables, and {ϕj} are orthogonal polynomials on the unit circle (OPUC).
As a reminder, the OPUC are polynomials {ϕj} that are defined by a probability Borel measure µ on T such that∫

T
ϕn(eiθ)ϕm(eiθ) dµ(eiθ) = δnm, for all n,m ∈ N ∪ {0}. (1)

For an annulus
A(s, t) = {z ∈ C : 0 ≤ s < |z| < t},

the variance of the number of zeros of Pn in A(s, t) is denoted as
Var[Nn(A(s, t))] := E[Nn(A(s, t))2]− E[Nn(A(s, t))]2, (2)

where E[Nn(A(s, t))] is the expected number of zeros of Pn in A(s, t).
Problem (Due to Igor Pritsker): Find the following limit

lim
n→∞

Var[Nn(A(s, t))]
n

.

Types of Spanning OPUC Considered

The types of OPUC we consider as a spanning basis of Pn is directly linked to the recurrence relation for {ϕj}:

ϕn+1(z) = zϕn(z)− ᾱnϕ∗n(z)√
1− |αn|2

, n ∈ N ∪ {0},

where sequence of recurrence coefficients {αn} ⊂ D, and ϕ∗n(z) = znϕn(1/z̄).
We consider the following classes of OPUC

1 {ϕj} such that their associated recurrence coefficients {αj} possess the property that
∞∑
j=0
|αj| <∞.

We denote this class of OPUC asMAS.
2 {ϕj} that satisfy the property that locally uniformly for z ∈ D we have

lim
n→∞

ϕn(z)
ϕ∗n(z)

= 0, (3)

which is known as the Nevai class of OPUC (note that Theorem 1.7.4 of [3] gives that the above limit is equivalent to
limn→∞αn = 0). We denote this class of OPUC asMN.

3 {ϕj} such that their associated measure µ of orthogonality in (1) is regular in the sense of Ullman-Stahl-Totik, that is,

εn := 1
n

log |κn| → 0, as n→∞, (4)

where κn is the leading coefficient of ϕn (note that equation (1.5.22) of [3] gives the representation κn = ∏n−1
i=0 (1− |αi|2)−1/2).

We denote this class of OPUC asMUST.
We note the following hierarchy:

MAS ⊂MN ⊂MUST.

Variance of the Number of Zeros in Annuli that contain the Unit Circle

Let Pn(z) = ∑n
k=0 ηk,nϕk(z), where {ϕk} are OPUC, and {ηk,n} are complex-valued random variables such that

sup{E[|ηk,n|t] | k = 0, 1, . . . , n; n ∈ N} <∞, t ∈ (0, 1] (5)
and

min
(

inf
n∈N

E[log |ηn,n|], inf
n∈N,z∈C

E[log |η0,n + z|]
)
> −∞. (6)

Relying on estimates concerning the expected discrepancy, E[|Nn(A(1/r, r))/n − 1|], of Pn provided in Theorem 3.1 of [2], with
further estimation it follows that the variance of the number of zeros given by (2) satisfies the following:

Theorem

Taking r ∈ (0, 1), for Pn(z) = ∑n
k=0 ηk,nϕk(z) with {ηk,n} satisfying (5) and (6), it follows that

1 When {ϕj} ⊂ MAS, we have
Var[Nn(A(1/r, r))]

n2 = O
√log n

n

 , as n→∞.

2 When {ϕj} ⊂ MUST, we have
Var[Nn(A(1/r, r))]

n2 = O
max


√

log n
n

, ε1/4
n


 , as n→∞,

where εn is given by (4).

Lemmas concerning Annuli that do not contain the Unit Circle

Due to the linearity of the expectation, observe that (2) can be written as
Var[Nn(A(s, t))] = E[Nn(A(s, t))] + E[Nn(A(s, t))(Nn(A(s, t))− 1)]− E[Nn(A(s, t))]2. (7)

When Pn(z) = ∑n
k=0 ηkϕk, with {ηk} i.i.d. complex-valued standard Gaussian, and {ϕk} are OPUC, one can appeal to integral

formulas for E[Nn(A(s, t))] and E[Nn(A(s, t))(Nn(A(s, t))− 1)] given by Corollary 3.4.2 in [1].
Combining the formula for E[Nn(A(s, t))] with Corollary 2 of [4] gives the following:

Lemma

When {ϕj} ⊂ MN and A(s, t) does not contain the unit circle, we have

lim
n→∞

E[Nn(A(s, t))] = 1
π

∫
A(s,t)

1
(1− |z|2)2 dA(z). (8)

Appealing to the formula for E[Nn(A(s, t))(Nn(A(s, t))− 1)], after much algebraic simplification then using the limit (3), it follows
that:

Lemma

For {ϕj} ⊂ MN and A(s, t) not containing the unit circle, we have

lim
n→∞

E[Nn(A(s, t))(Nn(A(s, t))− 1)] = 1
π2

∫
A(s,t)

∫
A(s,t)

(
1

(1− |z|2)2(1− |w|2)2 −
1

|1− zw|4

)
dA(z) dA(w) (9)

Variance of the Number of Zeros in Annuli that do not contain the Unit Circle

Using the representation (7) and combining (8) with (9), we achieve the following:
Theorem

Let Pn(z) = ∑n
k=0 ηkϕk(z), where {ϕk} ⊂ MN, and {ηk} are i.i.d. complex-valued standard Gaussian random variables. Then

lim
n→∞

Var[Nn(A(s, t))] =



(t2 − s2)[1− s2(t4(2 + s2)− 2)]
(1− t4)(1− s4)(1− (st)2)

, A(s, t) ( D,

(t2 − s2)[1− t2(s4(2 + t2)− 2)]
(1− t4)(1− s4)(1− (st)2)

, A(s, t) ( C \ D.

We note that taking s = 0 and t < 1 in the above theorem, we achieve that the random orthogonal polynomial possesses the property
that

lim
n→∞

Var[Nn(D(0, t))] = t2

1− t4
, where D(0, t) = {z ∈ C : |z| < t}.

Conjectures/Work in Progress

1 Under suitable conditions on {ϕj} and {ηj}, we have

lim
n→∞

Var[Nn(D)]
n

= c,

where c is a positive constant†.
2 Under suitable conditions on {ϕj} and {ηj}, it follows that

Nn(D)− E[Nn(D)]√
Var[Nn(D)]

d→ N(0, 1), as n→∞.

† The statement of the conjecture is due to Igor Pritsker.
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